Skip to main content
Log in

Solid-state diffusion joining of Ti6Al4V parts produced by selective laser melting: joint characteristics and bonding mechanism

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This work aims to investigate the microstructure and mechanical properties of Ti6Al4V parts produced by selective laser melting (SLM) in the early stage of solid-state diffusion bonding process. A thermomechanical simulator is employed to carry out the experiment. In the experiment, three diffusion temperatures (850°C, 900°C, and 950°C) are adopted, and the pressure is kept constant. It is found that the higher diffusion temperature reduces the voids on the bonding interface and part interior, and thus it improves the mechanical properties of the joint. The diffusion bonding joints consist of criss-cross acicular α′ martensitic structure. The volume fraction of martensitic α′ decreases with the increase of bonding temperature. Finally, the underlying mechanism of morphological evolution on the diffusion plane is analyzed. The results provide insights on the bonding mechanism of SLM-produced Ti6Al4V in solid-state diffusion joining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data and material

Data will be available upon request.

Code availability

Not applicable

References

  1. Liu S, Shin YC (2019) Additive manufacturing of Ti6Al4V alloy: a review. Mater Des 164:107552

    Article  Google Scholar 

  2. Oliveira JP, Santos TG, Miranda RM (2020) Revisiting fundamental welding concepts to improve additive manufacturing: from theory to practice. Prog Mater Sci 107:100590

    Article  Google Scholar 

  3. Oliveira JP, LaLonde AD, Ma J (2020) Processing parameters in laser powder bed fusion metal additive manufacturing. Mater Des 193:108762

    Article  Google Scholar 

  4. Mo DF, Song TF, Fang YJ, Jiang XS, Luo CQ, Simpson MD, Luo ZP (2018) A review on diffusion bonding between titanium alloys and stainless steels. Adv Mater Sci Eng 2018:1–15

    Article  Google Scholar 

  5. Oliveira JP, Panton B, Zeng Z, Andrei CM, Zhou Y, Miranda RM, Fernandes FB (2016) Laser joining of NiTi to Ti6Al4V using a niobium interlayer. Acta Mater 105:9–15

    Article  Google Scholar 

  6. Liu HJ, Feng XL (2011) Microstructures and interfacial quality of diffusion bonded TC21 titanium alloy joints. Trans Nonferrous Metals Soc China 21(1):58–64

    Article  Google Scholar 

  7. Liu H, Cao J, He P, Feng JC (2009) Effect of hydrogen on diffusion bonding of commercially pure titanium and hydrogenated Ti6Al4V alloys. Int J Hydrog Energy 34(2):1108–1113

    Article  Google Scholar 

  8. Feng JC, Liu H, He P, Cao J (2007) Effects of hydrogen on diffusion bonding of hydrogenated Ti6Al4V alloy containing 0.3 wt% hydrogen at fast heating rate. Int J Hydrog Energy 32(14):3054–3058

    Article  Google Scholar 

  9. Zhang H, Li J, Ma P, Xiong J, Zhang F (2018) Study on microstructure and impact toughness of TC4 titanium alloy diffusion bonding joint. Vacuum 152:272–277

    Article  Google Scholar 

  10. Lee HS, Yoon JH, Park CH, Ko YG, Shin DH, Lee CS (2007) A study on diffusion bonding of superplastic Ti–6Al–4V ELI grade. J Mater Process Technol 187:526–529

    Article  Google Scholar 

  11. Kato H, Shibata M, Yoshikawa K (1986) Diffusion welding of Ti/Ti and Ti/stainless steel rods under phase transformation in air. Mater Sci Technol 2(4):405–409

    Article  Google Scholar 

  12. Rybin VV, Greenberg BA, Antonova OV, Kar’kina LE, Inozemtsev AV, Semenov VA, Patselov AM (2007) Examining the bimetallic joint orthorhombic titanium aluminide and titanium alloy (diffusion welding). Weld J-New York 86(7):205

    Google Scholar 

  13. Duarte LI, Ramos AS, Vieira MF, Viana F, Vieira MT, Koçak M (2006) Solid-state diffusion bonding of gamma-TiAl alloys using Ti/Al thin films as interlayers. Intermetallics 14(10-11):1151–1156

    Article  Google Scholar 

  14. Ustinov AI, Falchenko YV, Ishchenko AY, Kharchenko GK, Melnichenko TV, Muraveynik AN (2008) Diffusion welding of γ-TiAl based alloys through nano-layered foil of Ti/Al system. Intermetallics 16(8):1043–1045

    Article  Google Scholar 

  15. Samavatian M, Zakipour S, Paidar M (2017) Effect of bonding pressure on microstructure and mechanical properties of Ti-6Al-4V diffusion-bonded joint. Weld World 61(1):69–74

    Article  Google Scholar 

  16. Motyka M, Nowak WJ, Wierzba B, Chrominski W (2020) Characterization of the interface between α and β titanium alloys in the diffusion couple. Metall Mater Trans A 51:6584–6591

    Article  Google Scholar 

  17. Ferguson B, Ramulu M (2019) Surface tracking of diffusion bonding void closure and its application to titanium alloys. Int J Mater Form 13:517–531

    Article  Google Scholar 

  18. Aydın K, Kaya Y, Kahraman N (2012) Experimental study of diffusion welding/bonding of titanium to copper. Mater Des 37:356–368

    Article  Google Scholar 

  19. He P, Yue X, Zhang JH (2008) Hot pressing diffusion bonding of a titanium alloy to a stainless steel with an aluminum alloy interlayer. Mater Sci Eng A 486(1-2):171–176

    Article  Google Scholar 

  20. Balasubramanian M (2015) Development of processing windows for diffusion bonding of Ti–6Al–4V titanium alloy and 304 stainless steel with silver as intermediate layer. Trans Nonferrous Metals Soc China 25(9):2932–2938

    Article  Google Scholar 

  21. Wang D, Cao J, Li W, Dai X, Feng J (2017) Zr hydrogenation by cathodic charging and its application in TC4 alloy diffusion bonding. Int J Hydrog Energy 42(9):6350–6359

    Article  Google Scholar 

  22. Tuppen SJ, Bache MR, Voice WE (2005) A fatigue assessment of dissimilar titanium alloy diffusion bonds. Int J Fatigue 27(6):651–658

    Article  Google Scholar 

  23. Simões S, Viana F, Ramos AS, Vieira MT, Vieira MF (2018) Microstructural characterization of dissimilar titanium alloys joints using Ni/Al nanolayers. Metals 8(9):715

    Article  Google Scholar 

  24. Song TF, Jiang XS, Shao ZY, Mo DF, Zhu DG, Zhu MH, Young CH, Luo ZP (2017) Interfacial microstructure and mechanical properties of diffusion-bonded joints of titanium TC4 (Ti-6Al-4V) and Kovar (Fe-29Ni-17Co) alloys. J Iron Steel Res Int 24(10):1023–1031

    Article  Google Scholar 

  25. Fu X, Wang X, Wang Q, Zhou W, Xu H, Liu D, Li Z, Chen G (2018) Effect of surface self-nanocrystallization on diffusion bonding between a titanium alloy and a TiAl-based alloy. J Mater Eng Perform 27(10):5551–5560

    Article  Google Scholar 

  26. Li B, Chen Z, He W, Zhou T, Wang Y, Peng L, Li J, Liu Q (2019) Effect of titanium grain orientation on the growth of compounds at diffusion bonded titanium/steel interfaces. Mater Charact 148:243–251

    Article  Google Scholar 

  27. Scherillo F, Astarita A, Carrino L, Pirozzi C, Prisco U, Squillace A (2019) Linear friction welding of Ti-6Al-4V parts produced by electron beam melting. Mater Manuf Process 34(2):201–207

    Article  Google Scholar 

  28. vPrashanth KG, Damodaram R, Maity T, Wang P, Eckert J (2017) Friction welding of selective laser melted Ti6Al4V parts. Mater Sci Eng A 704:66–71

    Article  Google Scholar 

  29. Prashanth KG, Damodaram R, Scudino S, Wang Z, Rao KP, Eckert J (2014) Friction welding of Al–12Si parts produced by selective laser melting. Mater Des 57:632–637

    Article  Google Scholar 

  30. Hu X, Xue Z, Zhao G, Yun J, Shi D, Yang X (2019) Laser welding of a selective laser melted Ni-base superalloy: microstructure and high temperature mechanical property. Mater Sci Eng A 745:335–345

    Article  Google Scholar 

  31. Nahmany M, Rosenthal I, Benishti I, Frage N, Stern A (2015) Electron beam welding of AlSi10Mg workpieces produced by selected laser melting additive manufacturing technology. Addit Manuf 8:63–70

    Google Scholar 

  32. Wang J, Wang Y, Shi J (2020) On efficiency and effectiveness of finite volume method for thermal analysis of selective laser melting. Eng Comput 37(6):2155–2175

    Article  Google Scholar 

  33. Yan X, Yin S, Chen C, Huang C, Bolot R, Lupoi R, Kuang M, Ma W, Coddet C, Liao H, Liu M (2018) Effect of heat treatment on the phase transformation and mechanical properties of Ti6Al4V fabricated by selective laser melting. J Alloys Compd 764:1056–1071

    Article  Google Scholar 

  34. Jin N, Yan Z, Wang Y, Cheng H, Zhang H (2020) Effects of heat treatment on microstructure and mechanical properties of selective laser melted Ti-6Al-4V lattice materials. Int J Mech Sci 190:106042

    Article  Google Scholar 

  35. Kahraman N (2007) The influence of welding parameters on the joint strength of resistance spot-welded titanium sheets. Mater Des 28(2):420–427

    Article  MathSciNet  Google Scholar 

  36. Moridi A, Demir AG, Caprio L, Hart AJ, Previtali B, Colosimo BM (2019) Deformation and failure mechanisms of Ti–6Al–4V as built by selective laser melting. Mater Sci Eng A 768:138456

    Article  Google Scholar 

  37. Ter Haar G, Becker T (2018) Selective laser melting produced Ti-6Al-4V: post-process heat treatments to achieve superior tensile properties. Materials 11(1):146

    Article  Google Scholar 

  38. Zhou W, Chew KG (2003) Effect of welding on impact toughness of butt-joints in a titanium alloy. Mater Sci Eng A 347(1-2):180–185

    Article  Google Scholar 

  39. Zhang J, Lu Z, Jia L, Xie H, Tao S, Wei X, Ma Y (2019) Critical conditions and grain growth model for dynamic recrystallization of Cu-Ni-Si alloy. Results Phys 15:102593

    Article  Google Scholar 

  40. Yang J, Yu H, Wang Z, Zeng X (2017) Effect of crystallographic orientation on mechanical anisotropy of selective laser melted Ti-6Al-4V alloy. Mater Charact 127:137–145

    Article  Google Scholar 

  41. Wang SC, Aindow M, Starink MJ (2003) Effect of self-accommodation on α/α boundary populations in pure titanium. Acta Mater 51(9):2485–2503

    Article  Google Scholar 

  42. He L, Dehghan-Manshadi A, Dippenaar RJ (2012) The evolution of microstructure of Ti–6Al–4V alloy during concurrent hot deformation and phase transformation. Mater Sci Eng A 549:163–167

    Article  Google Scholar 

  43. Quan GZ, Zhang L, Wang X (2017) Evolution of grain refinement degree induced by dynamic recrystallization for Nimonic 80A during hot compression process and its FEM analysis. Vacuum 139:51–63

    Article  Google Scholar 

  44. Quan GZ, Mao A, Luo GC, Liang JT, Wu DS, Zhou J (2013) Constitutive modeling for the dynamic recrystallization kinetics of as-extruded 3Cr20Ni10W2 heat-resistant alloy based on stress–strain data. Mater Des (1980-2015) 52:98–107

    Article  Google Scholar 

  45. Derby B, Wallach ER (1982) Theoretical model for diffusion bonding. Metal Sci 16(1):49–56

    Article  Google Scholar 

  46. Derby B, Wallach ER (1984) Diffusion bonding: development of theoretical model. Metal Sci 18(9):427–431

    Article  Google Scholar 

  47. Guo ZX, Ridley N (1987) Modelling of diffusion bonding of metals. Mater Sci Technol 3(11):945–953

    Article  Google Scholar 

  48. Wu GQ, Huang Z, Li HY (2005) Modelling of solid-state diffusion bonding with a real rough surface. In Materials Science Forum, 475, 3185-3188. Trans Tech Publications Ltd.

  49. Wang R, Tang Y, Li S, Ai Y, Li Y, Xiao B, Zhu L’, Liu X, Bai S (2020) Effect of lattice distortion on the diffusion behavior of high-entropy alloys. J Alloys Compd 825:154099

    Article  Google Scholar 

  50. Tsai KY, Tsai MH, Yeh JW (2013) Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater 61(13):4887–4897

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.W. conducted the experiment, analyzed the results, and developed the manuscript draft. Y.W. analyzed the results and contributed to the manuscript writing. J.S. supervised the project and finalized the manuscript.

Corresponding author

Correspondence to Jing Shi.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, Y. & Shi, J. Solid-state diffusion joining of Ti6Al4V parts produced by selective laser melting: joint characteristics and bonding mechanism. Int J Adv Manuf Technol 115, 1037–1048 (2021). https://doi.org/10.1007/s00170-021-07254-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07254-5

Keywords

Navigation