Skip to main content
Log in

Mechanical impact test methods for hard coatings of cutting tools: a review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Impact tests of different frequencies can be applied to simulate the cyclic fatigue load of the tool under different working conditions as well as different impact frequencies. The main objective of the present article is to review different impact test methods for hard tool coatings. In this regard, impact tests are divided into three categories, including high-frequency, medium-frequency, and low-frequency tests. In terms of the impact scale, impact tests can be divided into micro-scale and nano-scale tests. The impact tests at micro-scales and nano-scales aim to characterize the coating substrate and the coating itself, respectively. It is found that the interface properties between the coating and the substrate have a remarkable impact on the fatigue resistance of the tool coating. Finally, the design and future development of the impact test are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and materials

The data sets supporting the results of this article are included within the article and its additional files.

References

  1. Wang D, Sun Q, Hokkanen MJ, Zhang C, Lin FY, Liu Q, Zhu SP, Zhou T, Chang Q, He B, Zhou Q, Chen L, Wang Z, Ras RHA, Deng X (2020) Design of robust superhydrophobic surfaces. Nature 582:55–59. https://doi.org/10.1038/s41586-020-2331-8

    Article  Google Scholar 

  2. Bouzakis KD, Michailidis N, Skordaris G, Bouzakis E, Biermann D, M'Saoubi R (2012) Cutting with coated tools: coating technologies, characterization methods and performance optimization. CIRP Ann - Manuf Technol 61:703–723. https://doi.org/10.1016/j.cirp.2012.05.006

    Article  Google Scholar 

  3. Bouzakis KD, Skordaris G, Bouzakis E, Charalampous P, Kotsanis T, Tasoulas D, Kombogiannis S, Lemmer O (2015) Effect of the interface fatigue strength of NCD coated hardmetal inserts on their cutting performance in milling. Diam Relat Mater 59:80–89. https://doi.org/10.1016/j.diamond.2015.09.008

    Article  Google Scholar 

  4. Bouzakis KD, Makrimallakis S, Skordaris G, Bouzakis E, Kombogiannis S, Katirtzoglou G, Maliaris G (2013) Coated tools’ performance in up and down milling stainless steel, explained by film mechanical and fatigue properties. Wear 303:546–559. https://doi.org/10.1016/j.wear.2013.04.014

    Article  Google Scholar 

  5. Zhang T, Jiang F, Yan L, Jiang Z, Xu X (2021) A novel ultrahigh-speed ball-on-disc tribometer. Tribol Int 157:106901. https://doi.org/10.1016/j.triboint.2021.106901

    Article  Google Scholar 

  6. Kong J, Zhang T, Du D et al (2021) The development of FEM based model of orthogonal cutting for pure iron. J Manuf Process 64:674–683. https://doi.org/10.1016/j.jmapro.2021.01.044

    Article  Google Scholar 

  7. Zha X, Jiang F, Xu X (2017) Investigation of modelling and stress distribution of a coating/substrate system after an indentation test. Int J Mech Sci 134:1–14. https://doi.org/10.1016/j.ijmecsci.2017.10.002

    Article  Google Scholar 

  8. Wang K, Jiang F, Yan L, Xu X, Wang N, Zha X, Lu X, Wen Q (2019) Study on mechanism of crack propagation of sapphire single crystals of four different orientations under impact load and static load. Ceram Int 45:7359–7375. https://doi.org/10.1016/j.ceramint.2019.01.021

    Article  Google Scholar 

  9. Zhang T, Jiang F, Huang H, et al (2021) Towards understanding the brittle–ductile transition in the extreme

  10. Antonov M, Hussainova I, Sergejev F, Kulu P, Gregor A (2009) Assessment of gradient and nanogradient PVD coatings behaviour under erosive, abrasive and impact wear conditions. Wear 267:898–906. https://doi.org/10.1016/j.wear.2008.12.045

    Article  Google Scholar 

  11. Min Zhu, Wei Luo, Zhong Z (2003) Current state of surface engineering technologies for alleviating fretting damages. 3:27–30

  12. Beake BD, Smith JF, Ibañez Garcia MJ (2001) Micro-impact testing: a new technique for investigating fracture toughness. Thin Solid Films 398–399:438–443. https://doi.org/10.1016/S0040-6090(01)01397-9

    Article  Google Scholar 

  13. Fox-Rabinovich GS, Beake BD, Endrino JL, Veldhuis SC, Parkinson R, Shuster LS, Migranov MS (2006) Effect of mechanical properties measured at room and elevated temperatures on the wear resistance of cutting tools with TiAlN and AlCrN coatings. Surf Coat Technol 200:5738–5742. https://doi.org/10.1016/j.surfcoat.2005.08.132

    Article  Google Scholar 

  14. Beake BD, Lau SP, Smith JF (2004) Evaluating the fracture properties and fatigue wear of tetrahedral amorphous carbon films on silicon by nano-impact testing. Surf Coat Technol 177–178:611–615. https://doi.org/10.1016/S0257-8972(03)00934-4

    Article  Google Scholar 

  15. Beake BD, Bell GA, Goodes SR, Pickford NJ, Smith JF (2010) Improved nanomechanical test techniques for surface engineered materials. Surf Eng 26:37–49. https://doi.org/10.1179/174329409X451137

    Article  Google Scholar 

  16. Beake BD, Fox-Rabinovich GS, Veldhuis SC, Goodes SR (2009) Coating optimisation for high speed machining with advanced nanomechanical test methods. Surf Coat Technol 203:1919–1925. https://doi.org/10.1016/j.surfcoat.2009.01.025

    Article  Google Scholar 

  17. Beake BD, Bergdoll L, Isern L, Endrino JL, Fox-Rabinovich GS, Veldhuis SC (2021) Influence of probe geometry in micro-scale impact testing of nano-multilayered TiAlCrN/NbN coatings deposited on WC-Co. Int J Refract Met Hard Mater 95:105441. https://doi.org/10.1016/j.ijrmhm.2020.105441

    Article  Google Scholar 

  18. Beake BD, Isern L, Endrino JL, Liskiewicz TW, Shi X (2021) Micro-scale impact resistance of coatings on hardened tool steel and cemented carbide. Mater Lett 284(Part1):129009. https://doi.org/10.1016/j.matlet.2020.129009

    Article  Google Scholar 

  19. Skordaris G, Bouzakis KD, Charalampous P (2015) A dynamic FEM simulation of the nano-impact test on mono- or multi-layered PVD coatings considering their graded strength properties determined by experimental-analytical procedures. Surf Coat Technol 265:53–61. https://doi.org/10.1016/j.surfcoat.2015.01.063

    Article  Google Scholar 

  20. Skordaris G, Bouzakis K, Charalampous P (2018) A critical review of FEM models to simulate the nano-impact test on PVD coatings. Matec Web Conf 188:4–10. https://doi.org/10.1051/matecconf/201818804017

    Article  Google Scholar 

  21. Sun H, Xiao H, Li L (2016) Experimental study on cutting force and cutting power in high feed milling of Ti5Al5Mo5VCrFe. Mater Sci Forum 836–837:88–93. https://doi.org/10.4028/www.scientific.net/MSF.836-837.88

    Article  Google Scholar 

  22. Yang Z, Zhang D, Huang X et al (2010) The simulation of cutting force and temperature in high-speed milling of Ti-6Al-4V. Adv Mater Res 139–141:768–771. https://doi.org/10.4028/www.scientific.net/AMR.139-141.768

    Article  Google Scholar 

  23. MAN Zhong-Lei, HE Ning, WU Kai, LI Liang, JIANG Cheng-Yu (2004) Study on the force of high speed milling of Ti alloy under different cutting media. Mech Eng 615:

  24. Pan YZ, Ai X, Zhao J, Fu XL (2009) Tool-life optimization in high-speed milling of aeronautical aluminum alloy 7050-T7451. Mater Sci Forum 626(627):117–122. https://doi.org/10.4028/www.scientific.net/MSF.626-627.117

    Article  Google Scholar 

  25. Zhong ZL, Ai X, Liu ZQ (2013) Experimental study on cutting force and surface roughness for 7050-T7451 aluminum alloy of high speed milling. Appl Mech Mater 395–396:1026–1030. https://doi.org/10.4028/www.scientific.net/AMM.395-396.1026

    Article  Google Scholar 

  26. Bouzakis KD, Maliaris G, Makrimallakis S (2012) Strain rate effect on the fatigue failure of thin PVD coatings: an investigation by a novel impact tester with adjustable repetitive force. Int J Fatigue 44:89–97. https://doi.org/10.1016/j.ijfatigue.2012.05.010

    Article  Google Scholar 

  27. Bouzakis KD, Vidakis N, Leyendecker T, Erkens G, Wenke R (1997) Determination of the fatigue properties of multilayer PVD coatings on various substrates, based on the impact test and its FEM simulation. Thin Solid Films 308–309:315–322. https://doi.org/10.1016/S0040-6090(97)00561-0

    Article  Google Scholar 

  28. Bouzakis KD, Siganos A (2004) Fracture initiation mechanisms of thin hard coatings during the impact test. Surf Coat Technol 185:150–159. https://doi.org/10.1016/j.surfcoat.2003.12.028

    Article  Google Scholar 

  29. Liu CYLZQ (2018) Characterization for repeated impact resistance of TiN tool coatings. Mod Manuf Eng 10:471–477

    Google Scholar 

  30. Laribi M, Vannes AB, Treheux D (2007) Study of mechanical behavior of molybdenum coating using sliding wear and impact tests. Wear 262:1330–1336. https://doi.org/10.1016/j.wear.2007.01.018

    Article  Google Scholar 

  31. Bouzakis KD, Vidakis N, David K (1999) Concept of an advanced impact tester supported by evaluation software for the fatigue strength characterization of hard layered media. Thin Solid Films 355:322–329. https://doi.org/10.1016/S0040-6090(99)00451-4

    Article  Google Scholar 

  32. Bouzakis KD, Pappa M, Skordaris G, Bouzakis E, Gerardis S (2010) Correlation between PVD coating strength properties and impact resistance at ambient and elevated temperatures. Surf Coat Technol 205:1481–1485. https://doi.org/10.1016/j.surfcoat.2010.07.055

    Article  Google Scholar 

  33. Zanoria ES, Seitzman LE (2004) Characterization of thin metallurgical coating systems by repetitive inclined impact test in dry condition. Surf Coat Technol 182:161–170. https://doi.org/10.1016/S0257-8972(03)00869-7

    Article  Google Scholar 

  34. Fang Z, Chen J, He W, Yang Z, Yuan Z, Geng M, He G (2019) Study on the damage mechanism of TiN/Ti coatings based on multi-directional impact. Coatings 9(11):765. https://doi.org/10.3390/coatings9110765

  35. Su JF, Nie X, Mulholland T (2010) Combinative influence of impact and pressing forces on coating failure behaviour. Surf Coat Technol 205:1520–1526. https://doi.org/10.1016/j.surfcoat.2010.10.017

  36. Bouzakis E (2020) Fatigue endurance assessment of DLC coatings on high-speed steels at ambient and elevated temperatures by repetitive impact tests. Coatings 10(6):547. https://doi.org/10.3390/COATINGS10060547

  37. Fu T, Zhou ZF, Zhou YM, Zhu XD, Zeng QF, Wang CP, Li KY, Lu J (2012) Mechanical properties of DLC coating sputter deposited on surface nanocrystallized 304 stainless steel. Surf Coat Technol 207:555–564. https://doi.org/10.1016/j.surfcoat.2012.07.076

  38. Liang Z, Wang X, Wu Y, Xie L, Jiao L, Zhao W (2013) Experimental study on brittle-ductile transition in elliptical ultrasonic assisted grinding (EUAG) of monocrystal sapphire using single diamond abrasive grain. Int J Mach Tools Manuf 71:41–51. https://doi.org/10.1016/j.ijmachtools.2013.04.004

    Article  Google Scholar 

  39. Liang Z, Wang X, Zhao W, Wu Y, Sato T, Lin W (2010) A feasibility study on elliptical ultrasonic assisted grinding of sapphire substrate. Int J Abras Technol 3:190–202. https://doi.org/10.1504/IJAT.2010.034050

    Article  Google Scholar 

  40. Liang ZQ, Zhou TF, Wang XB et al (2013) Experimental investigations of grinding forces in elliptical ultrasonic assisted grinding (EUAG) of monocrystal sapphire. Adv Mater Res 797:223–228. https://doi.org/10.4028/www.scientific.net/AMR.797.223

    Article  Google Scholar 

  41. Liang Z, Wang X, Wu Y, Xie L, Liu Z, Zhao W (2012) An investigation on wear mechanism of resin-bonded diamond wheel in Elliptical Ultrasonic Assisted Grinding (EUAG) of monocrystal sapphire. J Mater Process Technol 212:868–876. https://doi.org/10.1016/j.jmatprotec.2011.11.009

    Article  Google Scholar 

  42. Zhang C, Feng P, Zhang J (2013) Ultrasonic vibration-assisted scratch-induced characteristics of C-plane sapphire with a spherical indenter. Int J Mach Tools Manuf 64:38–48. https://doi.org/10.1016/j.ijmachtools.2012.07.009

    Article  Google Scholar 

  43. Wang N, Jiang F, Xu X, Duan N, Wen Q, Lu X (2019) Research on the machinability of A-plane sapphire under diamond wire sawing in different sawing directions. Ceram Int 45:10310–10320. https://doi.org/10.1016/j.ceramint.2019.02.086

    Article  Google Scholar 

  44. Mingjian S, Zhongwei H, Zhibin Z, Binhui X (2017) Experimental research on the changing process of sapphire substrate surface shape and surface roughness in double- sided lapping. Mod Manuf Eng 1–5

  45. Hu ZW, Shao MJ, Guo JM et al (2017) Comparison of grinding characteristics of different crystal surfaces for sapphire. Guangxue Jingmi Gongcheng/Optics Precis Eng 25:1250–1258. https://doi.org/10.3788/OPE.20172505.1250

    Article  Google Scholar 

  46. Li L, Zhao S, Zhang N, et al Enhanced wear resistance of iron-based alloy

  47. Liu Y, Wang D, Deng C, Huo L, Wang L, Fang R (2015) Study on fabrication of ceramic coatings on Ti-6Al-4V alloy by combined ultrasonic impact treatment and electrospark. Surf Eng 31:892–897. https://doi.org/10.1179/1743294414Y.0000000413

    Article  Google Scholar 

  48. Zha X, Jiang F, Xu X (2018) Investigating the high frequency fatigue failure mechanisms of mono and multilayer PVD coatings by the cyclic impact tests. Surf Coat Technol 344:689–701. https://doi.org/10.1016/j.surfcoat.2018.03.101

    Article  Google Scholar 

  49. Zha X, Chen F, Jiang F, Xu X (2019) Correlation of the fatigue impact resistance of bilayer and nanolayered PVD coatings with their cutting performance in machining Ti–6Al–4V. Ceram Int 45:14704–14717. https://doi.org/10.1016/j.ceramint.2019.04.193

    Article  Google Scholar 

  50. Bouzakis KD, Gerardis S, Skordaris G, Bouzakis E (2011) Nano-impact test on a TiAlN PVD coating and correlation between experimental and FEM results. Surf Coat Technol 206:1936–1940. https://doi.org/10.1016/j.surfcoat.2011.08.015

    Article  Google Scholar 

  51. Bouzakis KD, Skordaris G, Gerardis S, Bouzakis E (2013) Nano-impact test on PVD-coatings with graded mechanical properties for assessing their brittleness. Mater Werkst 44:684–690. https://doi.org/10.1002/mawe.201300176

    Article  Google Scholar 

  52. Skordaris G, Bouzakis KD, Charalampous P, Bouzakis E, Paraskevopoulou R, Lemmer O, Bolz S (2014) Brittleness and fatigue effect of mono- and multi-layer PVD films on the cutting performance of coated cemented carbide inserts. CIRP Ann - Manuf Technol 63:93–96. https://doi.org/10.1016/j.cirp.2014.03.081

    Article  Google Scholar 

  53. Beake BD, Smith JF, Gray A, Fox-Rabinovich GS, Veldhuis SC, Endrino JL (2007) Investigating the correlation between nano-impact fracture resistance and hardness/modulus ratio from nanoindentation at 25-500 °C and the fracture resistance and lifetime of cutting tools with Ti1-xAlxN (x = 0.5 and 0.67) PVD coatings in milling operations. Surf Coat Technol 201:4585–4593. https://doi.org/10.1016/j.surfcoat.2006.09.118

    Article  Google Scholar 

  54. Batista JCA, Godoy C, Matthews A (2003) Impact testing of duplex and non-duplex (Ti,Al)N and Cr-N PVD coatings. Surf Coat Technol 163–164:353–361. https://doi.org/10.1016/S0257-8972(02)00632-1

    Article  Google Scholar 

  55. Bouzakis KD, Batsiolas M, Skordaris G, Stergioudi F, Michailidis N (2015) Repetitive impact test near uncoated and coated cutting edges for assessing their fatigue behavior. CIRP J Manuf Sci Technol 8:63–69. https://doi.org/10.1016/j.cirpj.2014.09.001

    Article  Google Scholar 

  56. Lamri S, Langlade C, Kermouche G (2010) Failure mechanisms of thin hard coatings submitted to repeated impacts: influence of the film thickness. Adv Mater Res 112:73–82. https://doi.org/10.4028/www.scientific.net/AMR.112.73

    Article  Google Scholar 

  57. Lamri S, Langlade C, Kermouche G (2013) Damage phenomena of thin hard coatings submitted to repeated impacts: influence of the substrate and film properties. Mater Sci Eng A 560:296–305. https://doi.org/10.1016/j.msea.2012.09.070

    Article  Google Scholar 

  58. Best JP, Polyakov M, Shinde D, Colliander MH, Wehrs J, Michler J, Morstein M (2018) Ni nanocluster composites for enhanced impact resistance of multilayered arc-PVD ceramic coatings. Surf Coat Technol 354:360–368. https://doi.org/10.1016/j.surfcoat.2018.07.102

    Article  Google Scholar 

  59. Chang YY, Yang YJ, Weng SY (2020) Effect of interlayer design on the mechanical properties of AlTiCrN and multilayered AlTiCrN/TiSiN hard coatings. Surf Coat Technol 389:125637. https://doi.org/10.1016/j.surfcoat.2020.125637

    Article  Google Scholar 

  60. Chang YY, Weng SY, Chen CH, Fu FX (2017) High temperature oxidation and cutting performance of AlCrN, TiVN and multilayered AlCrN/TiVN hard coatings. Surf Coat Technol 332:494–503. https://doi.org/10.1016/j.surfcoat.2017.06.080

    Article  Google Scholar 

Download references

Funding

This research is sponsored by the Project on the Integration of Industry and Research of Fujian Province (No. 2020H6014 and No. 2020H61010045), National Natural Science Foundation of China (No. 51705162), and Education Research Project of Young and Middle-aged Teacher of Fujian Province (Project number: JAT200233).

Author information

Authors and Affiliations

Authors

Contributions

Feng Jiang and Xuming Zha provided ideas for the paper; Tianxiang Wang and Fengbiao Chen collected data and wrote the paper. Jue Wang and Yousheng Li provided guidance and advice on the actual machining of coating tools.

Corresponding authors

Correspondence to Xuming Zha or Feng Jiang.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Zha, X., Chen, F. et al. Mechanical impact test methods for hard coatings of cutting tools: a review. Int J Adv Manuf Technol 115, 1367–1385 (2021). https://doi.org/10.1007/s00170-021-07219-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07219-8

Keywords

Navigation