Skip to main content
Log in

Affecting factors, optimization, and suppression of grinding marks: a review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Grinding marks is generated on the ground surface after grinding, and it would affect the surface quality, the subsequent polishing process and performance of workpiece. In this paper, the generation mechanism, affecting factors and optimization strategies, and suppression method of grinding marks was summarized. And then, the research trend of grinding marks was pointed out. From the review, some facts about grinding marks were clear. First of all, grinding marks are beneficial or detrimental in different occasions. Besides, the formation of grinding marks is affected by a variety of factors, including the type of processed material, wheel vibration, grinding wheel run out error, grains characteristics, surface structure of grinding wheel, relationship of grinding process parameters, and so on. Meantime, the grinding marks could be optimized with a suitable angle to improve the tribological performance of workpiece and suppressed to enhance the surface quality by truing wheels, matching grinding parameters, subsequent processing methods, and so on. And then, newer and more optimized and suppressed method of grinding marks should be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36

Similar content being viewed by others

References

  1. Zhang C, Guo B, Zhao Q, Liu H, Wang J, Zhang J (2019) Ultra-precision grinding of AlON ceramics: surface finish and mechanisms. J Eur Ceram Soc 39(13):3668–3676. https://doi.org/10.1016/j.jeurceramsoc.2019.05.005

    Article  Google Scholar 

  2. Deng H, Xu Z (2021) Laser dressing of arc-shaped resin-bonded diamond grinding wheels. J Mater Process Technol 288:116884. https://doi.org/10.1016/j.jmatprotec.2020.116884

    Article  Google Scholar 

  3. Chen M, Zhao Q, Shen D, Dan L (2005) The critical conditions of brittle–ductile transition and the factors influencing the surface quality of brittle materials in ultra-precision grinding. J Mater Process Technol 168(1):75–82. https://doi.org/10.1016/j.jmatprotec.2004.11.002

    Article  Google Scholar 

  4. Couey JA, Marsh ER, Knapp BR, Vallance RR (2008) In-process force monitoring for precision grinding semiconductor silicon wafers. Int J Technol Manag 7(5):430–440. https://doi.org/10.1504/IJMTM.2005.007695

    Article  Google Scholar 

  5. Zhu X, Kang R, Dong Z, Guo D (2010) Ultra-precision grinding technology and grinder of silicon wafers. China Mech Eng 21(18):2156–2164

    Google Scholar 

  6. Li L, Jiang Y, Zhang F (2011) A study on the manufacturing system of the axes linked ultra-precision grinding of aspheric surface. Key Eng Mater 487:500–504

    Article  Google Scholar 

  7. Wu M, Guo B, He P, Zhao Q (2018) Precision grinding of a microstructured surface on hard and brittle materials by a microstructured coarse-grained diamond grinding wheel. Ceram Int 44(7):8026–8034. https://doi.org/10.1016/j.ceramint.2018.01.243

    Article  Google Scholar 

  8. Sazedur Rahman M, Saleh T, Lim HS, Son SM, Rahman M (2008) Development of an on-machine profile measurement system in ELID grinding for machining aspheric surface with software compensation. Int J Mach Tool Manu 48(7/8):887–895. https://doi.org/10.1016/j.ijmachtools.2007.11.005

    Article  Google Scholar 

  9. Tawakoli T, Azarhoushang B (2008) Influence of ultrasonic vibrations on dry grinding of soft steel. Int J Mach Tool Manu 48(14):1585–1591. https://doi.org/10.1016/j.ijmachtools.2008.05.010

    Article  Google Scholar 

  10. Deng H, Xu Z (2020) Laser-dressing topography and quality of resin-bonded diamond grinding wheels. Opt Lasers Eng 136:106322. https://doi.org/10.1016/j.optlaseng.2020.106322

    Article  Google Scholar 

  11. Tawakoli T, Azarhoushang B, Mohammad RM (2009) Ultrasonic assisted dry grinding of 42CrMo4. Int J Adv Manuf Technol 42(9):883–891. https://doi.org/10.1007/s00170-008-1646-7

    Article  Google Scholar 

  12. Guo B, Zhao Q (2015) Mechanical truing of V-shape diamond wheels for micro-structured surface grinding. Int J Adv Manuf Technol 78(5):1067–1073. https://doi.org/10.1007/s00170-014-6721-7

    Article  Google Scholar 

  13. Chen B, Guo B, Zhao Q (2015) An investigation into parallel and cross grinding of aspheric surface on monocrystal silicon. Int J Adv Manuf Technol 80(5):737–746. https://doi.org/10.1007/s00170-015-7045-y

    Article  Google Scholar 

  14. Suzuki H, Okada M, Lin W, Morita S, Yamagata Y, Hanada H, Araki H, Kashima S (2014) Fine finishing of ground DOE lens of synthetic silica by magnetic field-assisted polishing. CIRP Ann Manuf Technol 63(1):313–316. https://doi.org/10.1016/j.cirp.2014.03.027

    Article  Google Scholar 

  15. Zhu S, Liu Y, Guo J, Li X (2009) Relationship of grinding textures and surface friction coefficient of common steels. Mater Mech Eng 33(6):31–33. https://doi.org/10.1061/41039(345)45

    Article  Google Scholar 

  16. Deng Z, Tao N, Tang H, Wan L, Liu W (2012) Research status and development trend of simulation prediction system for grinding process. Diamond Abras Eng 32(3):64–68

    Google Scholar 

  17. Ding W, Dai C, Yu T, Xu J, Fu Y (2017) Grinding performance of textured monolayer CBN wheels: undeformed chip thickness nonuniformity modeling and ground surface topography prediction. Int J Mach Tool Manu 122:66–80. https://doi.org/10.1016/j.ijmachtools.2017.05.006

    Article  Google Scholar 

  18. Lin X, Liu J, Ke X, Guo Y (2016) Investigation of waviness error in surface grinding of large axisymmetric aspheric lenses. Proc Inst Mech Eng B J Eng 230(7):1195–1202. https://doi.org/10.1177/0954405415624638

    Article  Google Scholar 

  19. Solhtalab A, Adibi H, Esmaeilzare A, Rezaei SM (2019) Cup wheel grinding-induced subsurface damage in optical glass BK7: an experimental, theoretical and numerical investigation. Int J Precis Eng Manuf 57:162–175. https://doi.org/10.1016/j.precisioneng.2019.04.003

    Article  Google Scholar 

  20. Brinksmeier E, Mutlugünes Y, Klocke F, Aurich LC, Shore P, Ohmori H (2010) Ultra-precision grinding. CIRP Ann Manuf Technol 59(2):652–671. https://doi.org/10.1016/j.cirp.2010.05.001

    Article  Google Scholar 

  21. Zhang L, Chen P, An T, Dai Y, Qin F (2019) Analytical prediction for depth of subsurface damage in silicon wafer due to self-rotating grinding process. Curr Appl Phys 19(5):570–581. https://doi.org/10.1016/j.cap.2019.02.015

    Article  Google Scholar 

  22. Jiang C, Cheng J, Wu T (2017) Theoretical model of brittle material removal fraction related to surface roughness and subsurface damage depth of optical glass during precision grinding. Int J Precis Eng Manuf 49:421–427. https://doi.org/10.1016/j.precisioneng.2017.04.004

    Article  Google Scholar 

  23. Zhang Z, Huo F, Wu Y, Huang H (2011) Grinding of silicon wafers using an ultrafine diamond wheel of a hybrid bond material. Int J Mach Tool Manu 51(1):18–24. https://doi.org/10.1016/j.ijmachtools.2010.10.006

    Article  Google Scholar 

  24. Sedlaček M, Podgornik B, Vižintin J (2012) Correlation between standard roughness parameters skewness and kurtosis and tribological behaviour of contact surfaces. Tribol Int 48:102–112. https://doi.org/10.1016/j.triboint.2011.11.008

    Article  Google Scholar 

  25. Yue H, Deng J, Zhang Y, Meng Y, Zou X (2020) Characterization of the textured surfaces under boundary lubrication. Tribol Int 151:106359. https://doi.org/10.1016/j.triboint.2020.106359

    Article  Google Scholar 

  26. Bigerelle M, Najjar D, Iost A (2003) Relevance of roughness parameters for describing and modelling machined surfaces. J Mater Sci 38(11):2525–2536. https://doi.org/10.1023/A:1023929807546

    Article  Google Scholar 

  27. Zhou L, Tian Y, Huang H, Sato H, Shimizu J (2012) A study on the diamond grinding of ultra-thin silicon wafers. Proc Inst Mech Eng B J Eng 226(1):66–75. https://doi.org/10.1177/0954405411414768

    Article  Google Scholar 

  28. Chao C, Yang S, Xiu S (2011) Characteristics of the point grinding surface texture and its effects on evaluation parameters of the surface roughness. J Northeast Univ 32(6):846–849. https://doi.org/10.1080/17415993.2010.547197

    Article  Google Scholar 

  29. Sedlaček M, Gregorčič P, Podgornik B (2017) Use of the roughness parameters Ssk and Sku to control friction-a method for designing surface texturing. Tribol Trans 60(2):260–266. https://doi.org/10.1080/10402004.2016.1159358

    Article  Google Scholar 

  30. Sedlacek M, Podgornik B, Vizintin J (2012) Planning surface texturing for reduced friction in lubricated sliding using surface roughness parameters skewness and kurtosis. Proc Inst Mech Eng J J Eng 226(8):661–667. https://doi.org/10.1177/1350650112439809

    Article  Google Scholar 

  31. Chen B, Li S, Deng Z, Guo B, Zhao Q (2017) Grinding marks on ultra-precision grinding spherical and aspheric surfaces. Int J Precis Eng Manuf Green Technol 4(4):419–429. https://doi.org/10.1007/s40684-017-0047-5

    Article  Google Scholar 

  32. Chen H, Zhou Q, Wan G, Xiao Q (2007) Surface mark simulation of double-side grinding of 300 mm silicon wafer. Chin J Rare Met 31(6):742–745. https://doi.org/10.3969/j.issn.0258-7076.2007.06.004

    Article  Google Scholar 

  33. Agarwal S, Venkateswara Rao P (2010) Modeling and prediction of surface roughness in ceramic grinding. Int J Mach Tool Manu 50(12):1065–1076. https://doi.org/10.1016/j.ijmachtools.2010.08.009

    Article  Google Scholar 

  34. Pan Y, Zhao Q, Guo B, Chen B, Wang J, Wu X (2020) An investigation of the surface waviness features of ground surface in parallel grinding process. Int J Mech Sci 170:105351. https://doi.org/10.1016/j.ijmecsci.2019.105351

    Article  Google Scholar 

  35. Kara F, Iek A, Demir H (2013) Multiple regression and ANN models for surface quality of cryogenically-treated AISI 52100 bearing steel. J Balk Tribol Assoc 19(4):570–584

    Google Scholar 

  36. Wu J, Huang C, Liao C (2003) Fracture strength characterization and failure analysis of silicon dies. Microelectron Reliab 43(2):269–277. https://doi.org/10.1016/S0026-2714(02)00314-1

    Article  Google Scholar 

  37. Wang Y, Xu L, Li D, Wang J, Shi L, Hu D (2012) Sphere generation grinding based spherical surface marks analysis. J Shanghai Jiaotong Univ 46(5):740–745

    Google Scholar 

  38. Zheng L, Chen W, Pozzi M, Teng X, Huo D (2019) Modulation of surface wettability by vibration assisted milling. Int J Precis Eng Manuf 55:179–188. https://doi.org/10.1016/j.precisioneng.2018.09.006

    Article  Google Scholar 

  39. Tian Y, Jin Z, Kang R, Guo D (2005) Analysis of kinematic geometry on wafer rotation grinding processes. China Mech Eng 16(20):1798–1801. https://doi.org/10.3321/j.issn:1004-132X.2005.20.004

    Article  Google Scholar 

  40. Li G, Rahim M, Pan W, Wen C, Ding S (2020) The manufacturing and the application of polycrystalline diamond tools–a comprehensive review. J Manuf Process 56:400–416. https://doi.org/10.1016/j.jmapro.2020.05.010

    Article  Google Scholar 

  41. Jiang J, Sun S, Wang D, Yang Y, Liu X (2020) Surface texture formation mechanism based on the ultrasonic vibration-assisted grinding process. Int J Mach Tool Manu 156:103595. https://doi.org/10.1016/j.ijmachtools.2020.103595

    Article  Google Scholar 

  42. Wos S, Koszela W, Pawlus P (2020) The effect of graphite surface texturing on the friction reduction in dry contact. Tribol Int 151:106535. https://doi.org/10.1016/j.triboint.2020.106535

    Article  Google Scholar 

  43. Varenberg M, Halperin G, Etsion I (2002) Different aspects of the role of wear debris in fretting wear. Wear 252(11):902–910. https://doi.org/10.1016/S0043-1648(02)00044-3

    Article  Google Scholar 

  44. Volchok A, Halperin G, Etsion I (2002) The effect of surface regular microtopography on fretting fatigue life. Wear 253(3):509–515. https://doi.org/10.1016/S0043-1648(02)00148-5

    Article  Google Scholar 

  45. Wos S, Koszela W, Pawlus P (2017) The effect of both surfaces textured on improvement of tribological properties of sliding elements. Tribol Int 113:182–188. https://doi.org/10.1016/j.triboint.2016.10.044

    Article  Google Scholar 

  46. Wang X, Shi L, Dai Q, Huang W, Wang X (2018) Multi-objective optimization on dimple shapes for gas face seals. Tribol Int 123:216–223. https://doi.org/10.1016/j.triboint.2018.03.011

    Article  Google Scholar 

  47. Podgornik B, Vilhena L, Sedlaček M, Rek Z, Žun I (2012) Effectiveness and design of surface texturing for different lubrication regimes. Meccanica 47(7):1613–1622. https://doi.org/10.1007/s11012-012-9540-7

    Article  MATH  Google Scholar 

  48. Liu C, Zhang L (2004) Selection and effect of parts surface roughness. Mod Mach Manuf Eng 2:114–115. https://doi.org/10.3969/j.issn.1671-3133.2004.02.043

    Article  Google Scholar 

  49. Li J, Zhu H (2009) Surface texture and its influence on tribological properties. Lubr Oil 34(2):94–97. https://doi.org/10.3969/j.issn.0254-0150.2009.02.028

    Article  Google Scholar 

  50. Lu H, Wen J, Xiu S, Deng Y (2016) Analysis of multi-scale point grinding surface texture features and tribological properties. Mach Des Manuf 7:93–95. https://doi.org/10.3969/j.issn.1001-3997.2016.07.024

    Article  Google Scholar 

  51. Chen S, Cheung C, Zhang F (2018) An experimental and theoretical analysis of surface generation in the ultra-precision grinding of hard and brittle materials. Int J Adv Manuf Technol 97(5):2715–2729. https://doi.org/10.1007/s00170-018-2121-8

    Article  Google Scholar 

  52. Bhaduri D, Soo S, Aspinwall D, Novovic D, Harden P, Bohr S, Martin D (2012) A study on ultrasonic assisted creep feed grinding of nickel based superalloys. Procedia CIRP 1(1):359–364. https://doi.org/10.1016/j.procir.2012.04.064

    Article  Google Scholar 

  53. Chen H, Tang J, Zhou W (2013) An experimental study of the effects of ultrasonic vibration on grinding surface roughness of C45 carbon steel. Int J Adv Manuf Technol 68(9):2095–2098. https://doi.org/10.1007/s00170-013-4824-1

    Article  Google Scholar 

  54. Curtis D, Soo S, Aspinwall D, Mantle A (2016) Evaluation of workpiece surface integrity following point grinding of advanced titanium and nickel based alloys. Procedia CIRP 45:47–50. https://doi.org/10.1016/j.procir.2016.02.343

    Article  Google Scholar 

  55. Zhao L, Zhao Q, Jin G, Kang X, Xin X (2013) Precision grinding of BK7 glasses using conditioned coarse-grained diamond wheel. Proc Inst Mech Eng B J Eng Manuf 227(10):1571–1577. https://doi.org/10.1177/0954405413488593

    Article  Google Scholar 

  56. Zhang Q, Zhao Q, To S, Guo B (2017) Application of X- ray diffraction to study the grinding induced surface damage mechanism of WC/Co. Int J Refract Met Hard Mater 64:205–209. https://doi.org/10.1016/j.ijrmhm.2016.11.006

    Article  Google Scholar 

  57. Liu Q, Huang G, Xu X, Fang C, Cui C (2018) Influence of grinding fiber angles on grinding of the 2D–Cf /C–SiC composites. Ceram Int 44(11):12774–12782. https://doi.org/10.1016/j.ceramint.2018.04.083

    Article  Google Scholar 

  58. Jiang X, Guo M, Li B (2018) Active control of high-frequency tool-workpiece vibration in micro-grinding. Int J Adv Manuf Technol 94(1):1429–1439. https://doi.org/10.1007/s00170-017-1015-5

    Article  Google Scholar 

  59. Yan Y, Xu J, Wiercigroch M (2016) Regenerative chatter in self-interrupted plunge grinding. Meccanica 51(12):3185–3202. https://doi.org/10.1007/s11012-016-0554-4

    Article  MathSciNet  Google Scholar 

  60. Hassui A, Diniz A (2003) Correlating surface roughness and vibration on plunge cylindrical grinding of steel. Int J Mach Tool Manu 43(8):855–862. https://doi.org/10.1016/S0890-6955(03)00049-X

    Article  Google Scholar 

  61. Kuriyagawa T, Yosihara N, Wu Y, Syoji K (2001) Formation of vertical striped pattern on the ground surface in high-reciprocation profile grinding. Int J Jpn Soc Precis Eng 67(8):1316–1320. https://doi.org/10.2493/jjspe.67.1316

    Article  Google Scholar 

  62. Cao H, Dörgeloh T, Riemer O, Brinksmeier E (2017) Adaptive separation of unbalance vibration in air bearing spindles. Procedia CIRP 62:357–362. https://doi.org/10.1016/j.procir.2016.06.069

    Article  Google Scholar 

  63. Inasaki I, Karpuschewski B, Lee H (2001) Grinding chatter–origin and suppression. CIRP Ann Manuf Technol 50(2):515–534. https://doi.org/10.1016/S0007-8506(07)62992-8

    Article  Google Scholar 

  64. Chen S, Cheung C, Zhang F, Zhao C (2018) Three-dimensional modelling and simulation of vibration marks on surface generation in ultra-precision grinding. Int J Precis Eng Manuf 53:221–235. https://doi.org/10.1016/j.precisioneng.2018.04.006

    Article  Google Scholar 

  65. Chen S, Cheung C, Zhao C, Zhang F (2017) Simulated and measured surface roughness in high-speed grinding of silicon carbide wafers. Int J Adv Manuf Technol 91(1-4):719–730. https://doi.org/10.1007/s00170-016-9805-8

    Article  Google Scholar 

  66. Chen J, Fang Q, Li P (2015) Effect of grinding wheel spindle vibration on surface roughness and subsurface damage in brittle material grinding. Int J Mach Tool Manu 91:12–23. https://doi.org/10.1016/j.ijmachtools.2015.01.003

    Article  Google Scholar 

  67. Cao Y, Guan J, Li B, Chen X, Yang J, Gan C (2013) Modeling and simulation of grinding surface topography considering wheel vibration. Int J Adv Manuf Technol 66(5):937–945. https://doi.org/10.1007/s00170-012-4378-7

    Article  Google Scholar 

  68. Huo F, Kang R, Li Z, Guo D (2013) Origin, modeling and suppression of grinding marks in ultra-precision grinding of silicon wafers. Int J Mach Tool Manu 66:54–65. https://doi.org/10.1016/j.ijmachtools.2012.11.006

    Article  Google Scholar 

  69. Lang X, He Y, Tang J, Chen H (2014) Grinding force model based on prominent height of abrasive submitted to Rayleigh distribution. J Cent South Univ 45(10):3386–3391

    Google Scholar 

  70. Hou Z, Komanduri R (2003) On the mechanics of the grinding process-Part I. Stochastic nature of the grinding process. Int J Mach Tool Manu 43(15):1579–1593. https://doi.org/10.1016/S0890-6955(03)00186-X

    Article  Google Scholar 

  71. Huo F, Guo D, Kang R, Feng G (2012) Nanogrinding of SiC wafers with high flatness and low subsurface damage. J Trans Nonferrous Metal Soc 22(12):3027–3033. https://doi.org/10.1016/S1003-6326(11)61566-5

    Article  Google Scholar 

  72. Zhao Q, Yu G, Ekkard B, Oltmann R, Kal R (2006) Ultra—precision grinding of BK7 optical glass using coarse-grained electroplated diamond wheel. Chin J Mech Eng 42(10):95–101. https://doi.org/10.3321/j.issn:0577-6686.2006.10.016

    Article  Google Scholar 

  73. Zhao Q, Yao J, Chen J (2009) ELID assisted grinding of optical glass with fine and coarse grained copper-resin bonded. Adv Mater Res 76-78:76–81. https://doi.org/10.4028/www.scientific.net/AMR.76-78.76

    Article  Google Scholar 

  74. Zhao Q, Chen J, Huang H, Fang X (2011) Grinding damage of BK7 using copper-resin bond coarse-grained diamond wheel. Int J Precis Eng Manuf 12(1):5–13. https://doi.org/10.1007/s12541-011-0001-3

    Article  Google Scholar 

  75. Wu M, Guo B, Zhao Q, He P (2008) Precision grinding of a microstructured surface on hard and brittle materials by a microstructured coarse-grained diamond grinding wheel. Ceram Int 44(7):8026–8034. https://doi.org/10.1016/j.ceramint.2018.01.243

    Article  Google Scholar 

  76. Zhao Q, Guo B (2015) Ultra-precision grinding of optical glasses using mono-layer nickel electroplated coarse-grained diamond wheels. Part 1: ELID assisted precision conditioning of grinding wheels. Precis Eng 39:56–66. https://doi.org/10.1016/j.precisioneng.2014.07.006

    Article  Google Scholar 

  77. Zhao Q, Guo B (2015) Ultra-precision grinding of optical glasses using mono-layer nickel electroplated coarse-grained diamond wheels. Part 2: Investigation of profile and surface grinding. Precis Eng 39:67–78. https://doi.org/10.1016/j.precisioneng.2014.07.007

    Article  Google Scholar 

  78. Zhao G, Lv Y, Li Y, Li W (2018) Simulation of the surface roughness with grinding wheel of ordered abrasive pattern. Mach Des Manuf 3:223–225. https://doi.org/10.3969/j.issn.1001-3997.2018.03.066

    Article  Google Scholar 

  79. Guo B, Jin Q, Zhao Q, Wu M, Zeng Z (2016) Research progress of grinding technology with surface structured wheels. J Harbin Inst Technol 48(7):1–13. https://doi.org/10.11918/j.issn.0367-6234.2016.07.001

    Article  Google Scholar 

  80. Oliveira J, Bottene A, França T (2010) A novel dressing technique for texturing of ground surfaces. J CIRP Ann Manuf Technol 59(1):361–364. https://doi.org/10.1016/j.cirp.2010.03.119

    Article  Google Scholar 

  81. Stȩpień P (2009) Regular surface texture generated by special grinding process. J Manuf Sci E T ASME 131(1):123–136. https://doi.org/10.1115/1.3070511

    Article  Google Scholar 

  82. Stepien P (2008) Mechanism of grinding wheel surface reproduction in regular surface texture generation. Surf Eng 24(3):219–225. https://doi.org/10.1179/174329408X282596

    Article  Google Scholar 

  83. Stepien P (2011) Deterministic and stochastic components of regular surface texture generated by a special grinding process. Wear 271(3):514–518. https://doi.org/10.1016/j.wear.2010.03.027

    Article  Google Scholar 

  84. Shan J, Xu L, Hu D (2016) Sphericity error estimation method based on spherical grinding marks. J Shanghai Jiaotong Univ 50(5):654–659. https://doi.org/10.16183/j.cnki.jsjtu.2016.05.002

    Article  Google Scholar 

  85. Hou H, Jiang T, Hu D (2011) Space trajectory analysis and parameter selection on large spherical precision grinding. China Mech Eng 22(7):757–761

    Google Scholar 

  86. Hou H, Li D, Wei C, Hu D, Xu K (2011) Process optimization in two spherical surface grinding processes using trajectories analysis. Proc Inst Mech Eng B J Eng Manuf 225(12):2177–2188. https://doi.org/10.1177/0954405411411404

    Article  Google Scholar 

  87. Trmal G, Holesovsky F (2001) Wave-shift and its effect on surface quality in super-abrasive grinding. Int J Mach Tool Manuf 41(7):979–989. https://doi.org/10.1016/S0890-6955(00)00116-4

    Article  Google Scholar 

  88. Chen Z, Wei X, Ren Q, Xie X (2009) Analysis and simulation of grinding motion on large size wafer self-rotating grinding. Diamond Abras Eng 2009(5):1–12. https://doi.org/10.3969/j.issn.1006-852X.2009.05.001

    Article  Google Scholar 

  89. Hwang Y, Ha K, Kim Y, Kim J, Lee S (2016) Suppression of the inflection pattern in ultraprecision grinding through the minimization of the hydrodynamic force using a toothed wheel. Int J Mach Tool Manuf 100:105–115. https://doi.org/10.1016/j.ijmachtools.2015.10.009

    Article  Google Scholar 

  90. Sun W, Pei Z, Fisher G (2005) Fine grinding of silicon wafers: effects of chuck shape on grinding marks. Int J Mach Tool Manuf 45(6):673–686. https://doi.org/10.1016/j.ijmachtools.2004.09.020

    Article  Google Scholar 

  91. Wang S, Hu Y, Feng Z (2010) Effect of surface roughness on sliding friction in lubricated contacts-reciprocal experiment study. Mod Manuf Eng 2010(3):21–24. https://doi.org/10.3969/j.issn.1671-3133.2010.03.007

    Article  Google Scholar 

  92. Menezes P, Kishore KS (2006) Effect of directionality of unidirectional grinding marks on friction and transfer layer formation of Mg on steel using inclined scratch test. Mater Sci Eng A Struct 429(1):149–160. https://doi.org/10.1016/j.msea.2006.05.080

    Article  Google Scholar 

  93. Chao C, Wang H, Kong N, Xiu S (2014) Point-grinding texture characteristics and its influence on tribological property of parts. Lubr Eng 39(9):4–7. https://doi.org/10.3969/j.issn.0254-0150.2014.09.002

    Article  Google Scholar 

  94. Du Y, Zhang K (2017) Influence of grinding textures on tribological property and lubricating oil matching based on finite element simulation. Surf Technol 46(7):122–127. https://doi.org/10.16490/j.cnki.issn.1001-3660.2017.07.020

    Article  Google Scholar 

  95. Zhang Y, Guo Y, Zhuang S (2003) Influence of chatter vibration on the ultreprecision machining accuracy of aspheric surface. Diamond Abras Eng 3:17–20. https://doi.org/10.3969/j.issn.1006-852X.2003.03.004

    Article  Google Scholar 

  96. Chidambaram S, Pei Z, Kassir S (2003) Fine grinding of silicon wafers: a mathematical model for grinding marks. Int J Mach Tool Manuf 43(15):1595–1602. https://doi.org/10.1016/S0890-6955(03)00187-1

    Article  Google Scholar 

  97. Pei Z, Alan S (2002) Fine grinding of silicon wafers: designed experiments. Int J Mach Tool Manu 42(3):395–404. https://doi.org/10.1016/S0890-6955(01)00123-7

    Article  Google Scholar 

  98. Wang Y, Liu K, Ning J, Zhang Z (2016) Experimental analysis on grinding burn for bearing rings raceway made of G95 Cr18. Bearing 12:23–27. https://doi.org/10.3969/j.issn.1000-3762.2016.12.007

    Article  Google Scholar 

  99. Lin X, Ma K, Huang H, Xu Q (2015) Distribution characteristics of surface roughness and waviness error in axisymmetric aspheric grinding. High Power Laser Part Beams 27(9):155–159. https://doi.org/10.11884/HPLPB201527.092013

    Article  Google Scholar 

  100. Gao S, Kang R, Dong Z, Guo D (2013) Subsurface damage distribution in silicon wafers ground with wafer rotation grinding method. J Mech Eng 49(3):88–94. https://doi.org/10.3901/JME.2013.03.088

    Article  Google Scholar 

Download references

Availability of data and material

We confirm that data is open and transparent

Code availability

Not applicable.

Funding

Financial support for this research was provided by the National Natural Science Foundation of China (No. 51705148) and the Hunan Provincial Natural Science Foundation of China (No. 2018JJ3165)

Author information

Authors and Affiliations

Authors

Contributions

Bing Chen contributed to the conceptualization, investigation, writing of the original draft, writing of the review, and editing.

Liang Luo contributed to the writing of the review, editing, and funding acquisition.

Haowen Jiao contributed to the review and editing.

Shunshun Li contributed to the review and editing.

Shichun Li contributed to the review and editing.

Zhaohui Deng contributed to the review and editing.

Honghui Yao contributed to the review and editing.

Corresponding authors

Correspondence to Bing Chen or Honghui Yao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Luo, L., Jiao, H. et al. Affecting factors, optimization, and suppression of grinding marks: a review. Int J Adv Manuf Technol 115, 1–29 (2021). https://doi.org/10.1007/s00170-021-07116-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07116-0

Keywords

Navigation