Skip to main content
Log in

Investigation of the laser cleaning process for IBS grids in optical coating technology

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The ion-beam sputtering (IBS) grid laser cleaning process is described as an alternative to manual cleaning and sandblasting in terms of surface morphology, roughness, and speed. It has been demonstrated that nanosecond fiber laser processing can be successfully used for controlled cleaning of complex grid surfaces at high speed and low surface impact, which is important for increasing the life of expensive parts. Under optimal conditions for single-pass processing, the scanning speed in the focal plane of a 160 mm F-Theta lens was 8 m/s at a laser pulse energy of 300 μJ, a pulse width of 120 ns, and a repetition rate of 100 kHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Lawrence JR (2017) Advances in laser materials processing: technology, research and applications. Woodhead

    Google Scholar 

  2. López AJ, Lamas J, Pozo-Antonio JS, Rivas T, Ramil A (2020) Development of processing strategies for 3D controlled laser ablation: application to the cleaning of stonework surfaces. Opt Lasers Eng 126:105897. https://doi.org/10.1016/j.optlaseng.2019.105897

    Article  Google Scholar 

  3. Lu Y, Yang L, Wang M, Wang Y (2020) Improved thermal stress model and its application in ultraviolet nanosecond laser cleaning of paint. Appl Opt 59:7652–7659. https://doi.org/10.1364/ao.398101

    Article  Google Scholar 

  4. Büchter E (2012) A green way to clean—laser cleaning: compact laser systems for industrial cleaning, coating removal and surface preparation. Laser Tech J 9:36–38. https://doi.org/10.1002/latj.201290068

    Article  Google Scholar 

  5. Lee JM, Curran C, Watkins KG (2001) Laser removal of copper particles from silicon wafers using UV, visible and IR radiation. Appl Phys A Mater Sci Process 73:219–224. https://doi.org/10.1007/s003390100685

    Article  Google Scholar 

  6. Ye Y, Yuan X, Xiang X, Dai W, Chen M, Miao X, Lv H, Wang H, Zheng W (2011) Laser plasma shockwave cleaning of SiO2 particles on gold film. Opt Lasers Eng 49:536–541. https://doi.org/10.1016/j.optlaseng.2010.12.006

    Article  Google Scholar 

  7. Marczak J, Koss A, Targowski P, Góra M, Strzelec M, Sarzyński A, Skrzeczanowski W, Ostrowski R, Rycyk A (2008) Characterization of laser cleaning of artworks. Sensors 8:6507–6548. https://doi.org/10.3390/s8106507

    Article  Google Scholar 

  8. Cooper M (1998) Laser cleaning in conservation: an introduction. Butterworth-Heinemann, Oxford

    Google Scholar 

  9. Mazzinghi P, Margheri F (2003) A short pulse, free running, Nd: YAG laser for the cleaning of stone cultural heritage. Opt Lasers Eng 39:191–202. https://doi.org/10.1016/S0143-8166(01)00133-6

    Article  Google Scholar 

  10. Shi T, Wang C, Mi G, Yan F (2019) A study of microstructure and mechanical properties of aluminum alloy using laser cleaning. J Manuf Process 42:60–66. https://doi.org/10.1016/j.jmapro.2019.04.015

    Article  Google Scholar 

  11. Lukiyanchuk B (2002) Laser cleaning: optical physics: applied physics and materials science. World Scientific

  12. Kane DM (2006) Laser cleaning II. World Scientific

  13. Zhou C, Li H, Chen G, Wang G, Shan Z (2020) Effect of single pulsed picosecond and 100 nanosecond laser cleaning on surface morphology and welding quality of aluminium alloy. Opt Laser Technol 127:106197. https://doi.org/10.1016/j.optlastec.2020.106197

    Article  Google Scholar 

  14. Veiko V, Samohvalov A, Ageev E (2013) Laser cleaning of engraved rolls coupled with spectroscopic control. Opt Laser Technol 54:170–175. https://doi.org/10.1016/j.optlastec.2013.05.015

    Article  Google Scholar 

  15. Uccello A, Maffini A, Dellasega D, Passoni M (2013) Laser cleaning of pulsed laser deposited rhodium films for fusion diagnostic mirrors. Fusion Eng Des 88:1347–1351. https://doi.org/10.1016/j.fusengdes.2013.01.036

    Article  Google Scholar 

  16. Maffini A, Uccello A, Dellasega D, Russo V, Perissinotto S, Passoni M (2015) Laser cleaning of diagnostic mirrors from tokamak-like carbon contaminants. J Nucl Mater 463:944–947. https://doi.org/10.1016/j.jnucmat.2014.10.016

    Article  Google Scholar 

  17. Moskal D, Martan J, Kučera M, Houdková Š, Kromer R (2016) Picosecond laser surface cleaning of AM1 superalloy. Phys Proceedia 83:249–257. https://doi.org/10.1016/j.phpro.2016.08.020

    Article  Google Scholar 

  18. Mosbacher M, Dobler V, Bertsch M, Münzer HJ, Boneberg J, Leiderer P (2003) Laser cleaning of silicon wafers: prospects and problems. In: Mittal KL (ed) Surface contamination and cleaning. CRC Press

  19. Lee JM, Steen WM (2001) In-process surface monitoring for laser cleaning processes using a chromatic modulation technique. Int J Adv Manuf Technol 17:281–287. https://doi.org/10.1007/s001700170181

    Article  Google Scholar 

  20. Sundar M, Mativenga PT, Li L, Crouse PL (2009) Laser removal of TiN from coated carbide substrate. Int J Adv Manuf Technol 45:1169–1178. https://doi.org/10.1007/s00170-009-2059-y

    Article  Google Scholar 

  21. Zivelonghi A, Giorleo L, Gelfi M, Ceretti E, La Vecchia GM (2017) Laser decoating of DLC films for tribological applications. Int J Adv Manuf Technol 93:1715–1724. https://doi.org/10.1007/s00170-017-0482-z

    Article  Google Scholar 

  22. Kravchenko YV, Klimentov SM, Derzhavin SI, Mamonov DN, Karpov NV, Mayorov AN (2020) Optimization of laser cleaning conditions using multimode short-pulse radiation. Opt Quant Electron 52:280. https://doi.org/10.1007/s11082-020-02399-1

    Article  Google Scholar 

  23. Mateo MP, Ctvrtnickova T, Fernandez E, Ramos JA, Yanez A, Nicolas G (2009) Laser cleaning of varnishes and contaminants on brass. Appl Surf Sci 255:5579–5583. https://doi.org/10.1016/j.apsusc.2008.08.034

    Article  Google Scholar 

  24. Leontyev A, Semerok A, Farcage D, Thro PY, Grisolia C, Widdowson A, Coad P, Rubel M (2011) Theoretical and experimental studies on molybdenum and stainless steel mirrors cleaning by high repetition rate laser beam. Fusion Eng Des 86:1728–1731. https://doi.org/10.1016/j.fusengdes.2010.12.068

    Article  Google Scholar 

  25. Bundesmann C, Neumann H (2018) Tutorial: the systematics of ion beam sputtering for deposition of thin films with tailored properties. J Appl Phys 124:231102. https://doi.org/10.1063/1.5054046

    Article  Google Scholar 

  26. Kaufman HR, Cuomo JJ, Harper JME (1982) Technology and applications of broad-beam ion sources used in sputtering. Part I. Ion source technology. J Vac Sci Technol 21:725–736. https://doi.org/10.1116/1.571819

    Article  Google Scholar 

  27. Becker M, Gies M, Polity A, Chatterjee S, Klar PJ (2019) Materials processing using radio-frequency ion-sources: Ion-beam sputter-deposition and surface treatment. Rev Sci Instrum 90:23901. https://doi.org/10.1063/1.5063976

    Article  Google Scholar 

  28. Tshabalala LC, Pityana S (2016) Surface texturing of Si3N4–SiC ceramic tool components by pulsed laser machining. Surf Coat Technol 289:52–60. https://doi.org/10.1016/j.surfcoat.2016.01.028

    Article  Google Scholar 

  29. Xing Y, Luo C, Wan Y, Huang P, Wu Z, Zhang K, (2021) Formation of bionic surface textures composed by micro-channels using nanosecond laser on Si3N4-based ceramics. Ceram. Int. In Press, Corrected Proof. doi:https://doi.org/10.1016/j.ceramint.2021.01.137

  30. Seo C, Shin H, Kim D (2018) Laser removal of particles from surfaces. In: Mittal KL, Lei W (ed) Laser technology: applications in adhesion and related areas. Scrive Publish LCC, pp 379–415

  31. Zagoranskiy I, Lorenz P, Ehrhardt M, Zimmer K (2019) Guided self-organization of nanodroplets induced by nanosecond IR laser radiation of molybdenum films on sapphire. Opt Lasers Eng 113:55–61. https://doi.org/10.1016/j.optlaseng.2018.10.005

    Article  Google Scholar 

  32. Zhang G, Hua X, Li F, Zhang Y, Shen C, Cheng J (2019) Effect of laser cleaning process parameters on the surface roughness of 5754-grade aluminum alloy. Int J Adv Manuf Technol 105:2481–2490. https://doi.org/10.1007/s00170-019-04395-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandr Belosludtsev.

Ethics declarations

Ethical approval

This chapter does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Not applicable for that section.

Consent to publish

All authors have read and agreed to the published version of the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belosludtsev, A., Bitinaitis, I., Baltrušaitis, K. et al. Investigation of the laser cleaning process for IBS grids in optical coating technology. Int J Adv Manuf Technol 114, 2863–2869 (2021). https://doi.org/10.1007/s00170-021-07035-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07035-0

Keywords

Navigation