Skip to main content
Log in

Recent development of ultrasonic brazing

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Ultrasonic brazing is an innovative application of power ultrasound in brazing. The conventional brazing processes are improved or even changed by the physical and chemical effects of ultrasound. Thus, ultrasonic brazing is used as a new method to achieve the bonding of dissimilar materials by using the mechanical vibration energy and static pressure of ultrasound frequency. The characteristics of power ultrasound and ultrasonic brazing are reviewed in this article. The mechanism of ultrasound in the brazing process is analyzed in detail. The latest ultrasonic brazing technologies are introduced. Applications of ultrasonic brazing in the joining of dissimilar materials are summarized emphatically. Besides, several shortcomings of current research are listed in this paper. Some recommendations for the future development of ultrasonic brazing are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations

References

  1. Li Y, Chen C, Yi R, Ouyang Y (2020) Review: Special brazing and soldering. J Manuf Process 60:608–635. https://doi.org/10.1016/j.jmapro.2020.10.049

    Article  Google Scholar 

  2. Laugier P, Haiat G (2011) Introduction to the physics of ultrasound.

  3. Ziskin M (1993) Fundamental physics of ultrasound and its propagation in tissue. Radiographics 13:705–709. https://doi.org/10.1148/radiographics.13.3.8316679

    Article  Google Scholar 

  4. Yao Y, Pan Y, Liu S (2020) Power ultrasound and its applications: A state-of-the-art review. Ultrason Sonochem 62:104722. https://doi.org/10.1016/j.ultsonch.2019.104722

    Article  Google Scholar 

  5. Komarov S, Kuwabara M, Abramov V (2005) High Power Ultrasonics in Pyrometallurgy: Current Status and Recent Development. ISIJ Int 45:1765–1782. https://doi.org/10.2355/isijinternational.45.1765

    Article  Google Scholar 

  6. Tsujino J, Ueoka T, Hasegawa K, Fujita Y, Shiraki T, Okada T, Tamura T (1996) New methods of ultrasonic welding of metal and plastic materials. Ultrasonics 34:177–185. https://doi.org/10.1016/0041-624X(96)81780-X

    Article  Google Scholar 

  7. Vianco P, Hosking F, Rejent J (1996) Ultrasonic soldering for structural and electronic applications. Weld J 75

  8. Antonevich JN (1976) Fundamentals of ultraosonic soldering. Welding Journal (Miami, Fla) 200-207

  9. Neppiras E (1971) Macrosonics in industry. Proc 7th International Congress on Acoustics 1:241–244

    Google Scholar 

  10. Saxty P (1999) Ultrasonic soldering - a farewell to flux. Weld Met Fabr 67:15–17

    Google Scholar 

  11. Tzanakis I, Xu WW, Lebon GSB, Eskin DG, Pericleous K, Lee PD (2015) In situ synchrotron radiography and spectrum analysis of transient cavitation bubbles in molten aluminium alloy. Phys Procedia 70:841-845. doi:https://doi.org/10.1016/j.phpro.2015.08.172

  12. Li Z, Xu Z, Ma L, Wang S, Liu X, Yan J (2018) Cavitation at filler metal/substrate interface during ultrasonic-assisted soldering. Part I: Cavitation characteristics. Ultrason Sonochem 49:249–259. https://doi.org/10.1016/j.ultsonch.2018.08.009

    Article  Google Scholar 

  13. Li Z, Xu Z, Ma L, Wang S, Liu X, Yan J (2019) Cavitation at filler metal/substrate interface during ultrasonic-assisted soldering. Part II: Cavitation erosion effect. Ultrason Sonochem 50:278–288. https://doi.org/10.1016/j.ultsonch.2018.09.027

    Article  Google Scholar 

  14. Bai L, Wu P, Liu H, Yan J, Su C, Li C (2018) Rod-shaped cavitation bubble structure in ultrasonic field. Ultrason Sonochem 44:184–195. https://doi.org/10.1016/j.ultsonch.2018.02.030

    Article  Google Scholar 

  15. Bai L, Chen X, Zhu G, Xu W, Lin W, Wu P, Li C, Xu D, Yan J (2017) Surface tension and quasi-emulsion of cavitation bubble cloud. Ultrason Sonochem 35(Pt A):405–414. https://doi.org/10.1016/j.ultsonch.2016.10.019

    Article  Google Scholar 

  16. Chen H, Chen Z, Lai Z, Li Y, Guo L (2019) The effects of ultrasonic treatments on the microstructure and mechanical properties of SAC0307 solder. J Mater Process Technol 266:619–626. https://doi.org/10.1016/j.jmatprotec.2018.11.025

    Article  Google Scholar 

  17. Maassen KF, Brown JS, Choi H, Thompson LL, Bostwick JB (2020) Acoustic analysis of ultrasonic assisted soldering for enhanced adhesion. Ultrasonics 101:106003. https://doi.org/10.1016/j.ultras.2019.106003

    Article  Google Scholar 

  18. Ma L, Xu Z, Zheng K, Yan J, Yang S (2014) Vibration characteristics of aluminum surface subjected to ultrasonic waves and their effect on wetting behavior of solder droplets. Ultrasonics 54(3):929–937. https://doi.org/10.1016/j.ultras.2013.11.005

    Article  Google Scholar 

  19. Noltingk BE, Neppiras EA Ultrasonic soldering irons. Journal of Scientific Instruments 28 (2):50-52

  20. Yonekura D, Ueki T, Tokiyasu K, Kira S, Wakabayashi T (2015) Bonding mechanism of lead-free solder and glass plate by ultrasonic assisted soldering method. Mater Des (1980-2015) 65:907–913. https://doi.org/10.1016/j.matdes.2014.10.024

    Article  Google Scholar 

  21. Li G, Li Z, Li H, Shi Y (2014) Development of an Er-doped Mg–Zn–Al solder by ultrasonic treatment and its joint property. Mater Lett 136:59–62. https://doi.org/10.1016/j.matlet.2014.08.008

    Article  Google Scholar 

  22. Xu Y, Ma X, Tang H, Yan J (2020) Mechanism of the interfacial reaction between sapphire and Sn-3.5Ag-4Ti solder at a low temperature in air by ultrasound. Ceram Int 46(4):4435–4443. https://doi.org/10.1016/j.ceramint.2019.10.169

    Article  Google Scholar 

  23. Xu Z, Li Z, Chai B, Yan J (2020) Formation of TiAl3 and its reinforcing effect in TA15 alloy joint ultrasonically brazed with pure Al. J Alloys Compd 815. https://doi.org/10.1016/j.jallcom.2019.152493

  24. Cui W, Li S, Yan J, He J, Liu Y (2015) Ultrasonic-assisted brazing of sapphire with high strength Al–4.5Cu–1.5Mg alloy. Ceram Int 41(6):8014–8022. https://doi.org/10.1016/j.ceramint.2015.02.149

    Article  Google Scholar 

  25. Cui W, Li S, Yan J, Zhang X (2018) Microstructure and mechanical performance of composite joints of sapphire by ultrasonic-assisted brazing. J Mater Process Technol 257:1–6. https://doi.org/10.1016/j.jmatprotec.2018.02.011

    Article  Google Scholar 

  26. Li MY, Wang CQ, Bang HS, Kim YP (2005) Development of a flux-less soldering method by ultrasonic modulated laser. J Mater Process Technol 168(2):303–307. https://doi.org/10.1016/j.jmatprotec.2005.02.237

    Article  Google Scholar 

  27. Kalashnikov KN, Zhukov LL, Kalashnikova TA, Dmitriev AV (2018) Strength properties of ultrasonic-assisted laser welded stainless steel 321.

  28. Zhou S, Ma G, Dongjiang W, Chai D, Lei M (2018) Ultrasonic vibration assisted laser welding of nickel-based alloy and Austenite stainless steel. J Manuf Process 31:759–767. https://doi.org/10.1016/j.jmapro.2017.12.023

    Article  Google Scholar 

  29. Tarasov SY, Vorontsov AV, Fortuna SV, Rubtsov VE, Krasnoveikin VA, Kolubaev EA (2019) Ultrasonic-assisted laser welding on AISI 321 stainless steel. Welding in the World 63(3):875–886. https://doi.org/10.1007/s40194-019-00716-1

    Article  Google Scholar 

  30. Lei Z, Bi J, Li P, Li Q, Chen Y, Zhang D (2018) Melt flow and grain refining in ultrasonic vibration assisted laser welding process of AZ31B magnesium alloy. Opt Laser Technol 108:409–417. https://doi.org/10.1016/j.optlastec.2018.07.015

    Article  Google Scholar 

  31. Lei Z, Bi J, Li P, Guo T, Zhao Y, Zhang D (2018) Analysis on welding characteristics of ultrasonic assisted laser welding of AZ31B magnesium alloy. Opt Laser Technol 105:15–22. https://doi.org/10.1016/j.optlastec.2018.02.050

    Article  Google Scholar 

  32. Min D (2019) Ultrasonic semi-solid soldering 6061 aluminum alloys joint with Sn-9Zn solder reinforced with nano/nano+micron Al2O3 particles. Ultrason Sonochem 52:150–156. https://doi.org/10.1016/j.ultsonch.2018.11.009

    Article  Google Scholar 

  33. Xiao Y, Li S, Wang Z, Xiao Y, Song Z, Mao Y, Li M (2018) Microstructure and mechanical properties of 7075-Al alloy joint ultrasonically soldered with Ni-foam/Sn composite solder. Mater Sci Eng A 729:241–248. https://doi.org/10.1016/j.msea.2018.05.015

    Article  Google Scholar 

  34. Chen X, Yan J, Ren S, Wei J, Wang Q (2013) Microstructure and mechanical properties of Ti–6Al–4V/Al1060 joints by ultrasonic-assisted brazing in air. Mater Lett 95:197–200. https://doi.org/10.1016/j.matlet.2012.12.105

    Article  Google Scholar 

  35. Chen X, Yan J, Ren S, Wei J, Wang Q (2013) Ultrasonic-assisted brazing of SiC ceramic to Ti–6Al–4V alloy using a novel AlSnSiZnMg filler metal. Mater Lett 105:120–123. https://doi.org/10.1016/j.matlet.2013.04.042

    Article  Google Scholar 

  36. Ji H, Cheng X, Li M (2016) Ultrafast ultrasonic-assisted joining of bare α-alumina ceramics through reaction wetting by aluminum filler in air. J Eur Ceram Soc 36(16):4339–4344. https://doi.org/10.1016/j.jeurceramsoc.2016.06.028

    Article  Google Scholar 

  37. Leng X, Wang C, Zhang Y, Chen X, Yan J (2011) Strengthening mechanism of ceramic particle reinforced bonds by ultrasonic brazing of AlMMCs. Trans Nonferrous Metals Soc China 21:s290–s294. https://doi.org/10.1016/s1003-6326(11)61593-8

    Article  Google Scholar 

  38. Takemoto T, Okamoto I (1988) Intermetallic compounds formed during brazing of titanium with aluminium filler metals. J Mater Sci 23(4):1301–1308

    Article  Google Scholar 

  39. Chen X, Yan J, Gao F, Wei J, Xu Z, Fan G (2013) Interaction behaviors at the interface between liquid Al-Si and solid Ti-6Al-4V in ultrasonic-assisted brazing in air. Ultrason Sonochem 20(1):144–154. https://doi.org/10.1016/j.ultsonch.2012.06.011

    Article  Google Scholar 

  40. Ma S, Ji H, Zhou J, Lu H, Liang M, Li M, Li M (2017) Rapid formation of intermetallic joints with Sn/metal composite alloys by ultrasonic-assisted soldering for high-temperature chip attachment. doi:https://doi.org/10.1109/ICEPT.2017.8046660

  41. Ji H, Li M, Zhao W, Zhang W (2019) Ultrasonic-accelerated intermetallic joint formation with composite solder for high-temperature power device packaging. Paper presented at the 2019 IEEE 69th Electronic Components and Technology Conference (ECTC),

  42. Ji H, Li M, Ma S, Li M (2016) Ni 3 Sn 4 -composed die bonded interface rapidly formed by ultrasonic-assisted soldering of Sn/Ni solder paste for high-temperature power device packaging. Mater Des 108:590–596. https://doi.org/10.1016/j.matdes.2016.07.027

    Article  Google Scholar 

  43. Ji H, Li M, Li M (2016) Ultrasonic-assisted soldering of Sn/Ni composite solder during die bonding for high-temperature application. doi:https://doi.org/10.1109/ICEPT.2016.7583139

  44. Xie R, Chen X, Lai Z, Liu L, Zou G, Yan J, Wang W (2016) Microstructure, mechanical properties and mechanism of ultrasound-assisted rapid transient liquid phase bonding of magnesium alloy in air. Mater Des 91:19–27. https://doi.org/10.1016/j.matdes.2015.11.071

    Article  Google Scholar 

  45. Xu Z, Li Z, Peng L, Yan J (2019) Ultra-rapid transient liquid phase bonding of Mg alloys within 1 s in air by ultrasonic assistance. Mater Des 161:72–79. https://doi.org/10.1016/j.matdes.2018.11.015

    Article  Google Scholar 

  46. Xu Z, Chen S, Peng L, Yan J, Li Z (2020) Microstructure evolution and mechanical properties of ultrasonically TLP bonded Mg joint. J Manuf Process 52:145–151. https://doi.org/10.1016/j.jmapro.2020.01.056

    Article  Google Scholar 

  47. Wang Q, Fu Y, Lang Q, Yan J, Chen S (2019) Microstructure and mechanical properties of magnesium alloys joints with Ag-Cu interlayer by ultrasonic-induced transient liquid phase bonding in air for structure lightweight design. Mater Lett 237:37–40. https://doi.org/10.1016/j.matlet.2018.11.058

    Article  Google Scholar 

  48. Nagaoka T, Morisada Y, Fukusumi M, Takemoto T (2009) Joint strength of aluminum ultrasonic soldered under liquidus temperature of Sn–Zn hypereutectic solder. J Mater Process Technol 209(11):5054–5059. https://doi.org/10.1016/j.jmatprotec.2009.02.003

    Article  Google Scholar 

  49. Xiao Y, Ji H, Li M, Kim J, Kim H (2013) Microstructure and joint properties of ultrasonically brazed Al alloy joints using a Zn–Al hypereutectic filler metal. Mater Des 47:717–724. https://doi.org/10.1016/j.matdes.2013.01.004

    Article  Google Scholar 

  50. Ji H, Wang J, Li M (2014) Evolution of the bulk microstructure in 1100 aluminum builds fabricated by ultrasonic metal welding. J Mater Process Technol 214(2):175–182. https://doi.org/10.1016/j.jmatprotec.2013.09.005

    Article  Google Scholar 

  51. Gheybi Hashemabad S, Gu Z, Ando T (2016) Flux-less direct soldering of aluminum by ultrasonic surface activation. J Mater Process Technol 233:135–141. https://doi.org/10.1016/j.jmatprotec.2016.02.015

    Article  Google Scholar 

  52. Li Z, Xu Z, Zhao D, Liu X, Yan J (2020) Grain refinement caused by intensified cavitation within narrow channel and its improvement to ultrasonically soldered Al joint property. Ultrason Sonochem 60:104786. https://doi.org/10.1016/j.ultsonch.2019.104786

    Article  Google Scholar 

  53. Li Y, Zhao W, Leng X, Fu Q, Wang L, Yan J (2011) Microstructure evolution and mechanical properties of ultrasonic-assisted soldering joints of 2024 aluminum alloys. Trans Nonferrous Metals Soc China 21(9):1937–1943. https://doi.org/10.1016/s1003-6326(11)60953-9

    Article  Google Scholar 

  54. Xu Z, Ma L, Yan J, Yang S, Du S (2012) Wetting and oxidation during ultrasonic soldering of an alumina reinforced aluminum–copper–magnesium (2024 Al) matrix composite. Compos A: Appl Sci Manuf 43(3):407–414. https://doi.org/10.1016/j.compositesa.2011.12.006

    Article  Google Scholar 

  55. Niu W, Xiao Y, Wan C, Li D, Fu H, He H (2020) Ultrasonic bonding of 2024 Al alloy using Ni-foam/Sn composite solder at ambient temperature. Mater Sci Eng A 771. https://doi.org/10.1016/j.msea.2019.138663

  56. Ding M, Zhang PL, Zhang ZY, Yao S (2010) Direct-soldering 6061 aluminum alloys with ultrasonic coating. Ultrason Sonochem 17(2):292–297. https://doi.org/10.1016/j.ultsonch.2009.10.007

    Article  Google Scholar 

  57. Yu XY, Xing WQ, Ding M (2016) Ultrasonic semi-solid coating soldering 6061 aluminum alloys with Sn-Pb-Zn alloys. Ultrason Sonochem 31:216–221. https://doi.org/10.1016/j.ultsonch.2016.01.004

    Article  Google Scholar 

  58. Guo W, Leng X, Luan T, Yan J, He J (2017) Ultrasonic-promoted rapid TLP bonding of fine-grained 7034 high strength aluminum alloys. Ultrason Sonochem 36:354–361. https://doi.org/10.1016/j.ultsonch.2016.12.002

    Article  Google Scholar 

  59. Guo W, Luan T, He J, Yan J (2017) Ultrasonic-assisted soldering of fine-grained 7034 aluminum alloys using ZnAl filler metals. Mater Des 125:85–93. https://doi.org/10.1016/j.matdes.2017.03.073

    Article  Google Scholar 

  60. Guo W, Luan T, He J, Yan J (2018) Ultrasonic-assisted soldering of fine-grained 7034 aluminum alloy using Sn-Zn solders below 300 degrees C. Ultrason Sonochem 40(Pt A):815–821. https://doi.org/10.1016/j.ultsonch.2017.08.020

    Article  Google Scholar 

  61. Wang Q, Zhu L, Chen X, Yan J, Xie R, Li P, Wang Z, Wang Z, Li Y, Zhou X (2016) Si particulate-reinforced ZnAl based composites joints of hypereutectic Al50Si alloys by ultrasonic-assisted soldering. Mater Des 107:41–46. https://doi.org/10.1016/j.matdes.2016.05.121

    Article  Google Scholar 

  62. Wang Q, Chen X, Zhu L, Yan J, Lai Z, Zhao P, Bao J, Lv G, You C, Zhou X, Zhang J, Li Y (2017) Rapid ultrasound-induced transient-liquid-phase bonding of Al-50Si alloys with Zn interlayer in air for electrical packaging application. Ultrason Sonochem 34:947–952. https://doi.org/10.1016/j.ultsonch.2016.08.004

    Article  Google Scholar 

  63. Zhu L, Wang Q, Shi L, Zhang X, Yang T, Yan J, Zhou X, Chen S (2018) Ultrarapid formation of multi-phase reinforced joints of hypereutectic Al-Si alloys via an ultrasound-induced liquid phase method using Sn-51In interlayer. Mater Sci Eng A 711:94–98. https://doi.org/10.1016/j.msea.2017.11.014

    Article  Google Scholar 

  64. Nagaoka T, Morisada Y, Fukusumi M, Takemoto T (2011) Selection of soldering temperature for ultrasonic-assisted soldering of 5056 aluminum alloy using Zn–Al system solders. J Mater Process Technol 211(9):1534–1539. https://doi.org/10.1016/j.jmatprotec.2011.04.004

    Article  Google Scholar 

  65. Wang Q, Xiao Y, Zhang X (2017) Ultrasound-assisted soldering of Cu alloy using a Ni-foam reinforced Sn composite solder. doi:https://doi.org/10.1109/ICEPT.2017.8046584

  66. Xiao Y, Wang Q, Wang L, Zeng X, Li M, Wang Z, Zhang X, Zhu X (2018) Ultrasonic soldering of Cu alloy using Ni-foam/Sn composite interlayer. Ultrason Sonochem 45:223–230. https://doi.org/10.1016/j.ultsonch.2018.03.005

    Article  Google Scholar 

  67. Ji H, Li M, Qiao Y (2016) Ultrasonic-assisted soldering of Sn-Based solder alloys to form intermetallic interconnects for high temperature application. Paper presented at the 2016 IEEE 66th Electronic Components and Technology Conference (ECTC)

  68. Pan H, Huang J, Ji H, Li M (2019) Enhancing the solid/liquid interfacial metallurgical reaction of Sn+Cu composite solder by ultrasonic-assisted chip attachment. J Alloys Compd 784:603–610. https://doi.org/10.1016/j.jallcom.2019.01.090

    Article  Google Scholar 

  69. Lee B, Yoon J (2017) Cu-Sn intermetallic compound joints for high-temperature power electronics applications. J Electron Mater 47:1–6. https://doi.org/10.1007/s11664-017-5792-2

    Article  Google Scholar 

  70. Li Z, Li M, Xiao Y, Wang C (2014) Ultrarapid formation of homogeneous Cu6Sn5 and Cu3Sn intermetallic compound joints at room temperature using ultrasonic waves. Ultrason Sonochem 21(3):924–929. https://doi.org/10.1016/j.ultsonch.2013.09.020

    Article  Google Scholar 

  71. Zhao HY, Liu JH, Li ZL, Zhao YX, Niu HW, Song XG, Dong HJ (2017) Non-interfacial growth of Cu3Sn in Cu/Sn/Cu joints during ultrasonic-assisted transient liquid phase soldering process. Mater Lett 186:283–288. https://doi.org/10.1016/j.matlet.2016.10.017

    Article  Google Scholar 

  72. Zhao HY, Liu JH, Li ZL, Song XG, Zhao YX, Niu HW, Tian H, Dong HJ, Feng JC (2018) A comparative study on the microstructure and mechanical properties of Cu6Sn5 and Cu3Sn joints formed by TLP soldering with/without the assistance of ultrasonic waves. Metall Mater Trans A 49(7):2739–2749. https://doi.org/10.1007/s11661-018-4664-6

    Article  Google Scholar 

  73. Ji H, Wang Q, Li M (2012) Effects of ultrasonic vibration on undercooling and microstructures of SAC305 alloy. doi:https://doi.org/10.1109/ICEPT-HDP.2012.6474619

  74. Ji H, Wang Q, Li M, Wang C (2014) Ultrafine-grain and isotropic Cu/SAC305/Cu solder interconnects fabricated by high-intensity ultrasound-assisted solidification. J Electron Mater 43(7):2467–2478. https://doi.org/10.1007/s11664-014-3113-6

    Article  Google Scholar 

  75. Ji H, Wang Q, Li M (2015) Microstructural evolution of lead-free solder joints in ultrasonic-assisted soldering. J Electron Mater 45(1):88–97. https://doi.org/10.1007/s11664-015-4108-7

    Article  Google Scholar 

  76. Tan AT, Tan AW, Yusof F (2016) Influence of high-power-low-frequency ultrasonic vibration time on the microstructure and mechanical properties of lead-free solder joints. J Mater Process Technol 238:8–14. https://doi.org/10.1016/j.jmatprotec.2016.06.036

    Article  Google Scholar 

  77. Tan AT, Tan AW, Yusof F (2017) Evolution of microstructure and mechanical properties of Cu/SAC305/Cu solder joints under the influence of low ultrasonic power. J Alloys Compd 705:188–197. https://doi.org/10.1016/j.jallcom.2017.02.165

    Article  Google Scholar 

  78. Xiao Y, Li M, Wang L, Huang S, Du X, Liu Z-Q (2015) Interfacial reaction behavior and mechanical properties of ultrasonically brazed Cu/Zn–Al/Cu joints. Mater Des 73. https://doi.org/10.1016/j.matdes.2015.02.016

  79. Luan T, Guo W, Yang S, Ma Z, He J, Yan J (2017) Effect of intermetallic compounds on mechanical properties of copper joints ultrasonic-soldered with Sn-Zn alloy. J Mater Process Technol 248:123–129. https://doi.org/10.1016/j.jmatprotec.2017.04.019

    Article  Google Scholar 

  80. Yang Y, Li S, Liang Y, Li B (2019) The wetting phenomenon and precursor film characteristics of Sn-37Pb/Cu under ultrasonic fields. Mater Lett 234:92–95. https://doi.org/10.1016/j.matlet.2018.09.005

    Article  Google Scholar 

  81. Dong H, Li Z, Song X, Guo X, Luo Y, Bai T, Wei S, Zhao H, Yan J, Feng J (2019) Low-temperature ultrasound-activated joining of ZrO2 ceramics using Sn-Al-Cu solder. J Am Ceram Soc 102(5):2272–2277. https://doi.org/10.1111/jace.16293

    Article  Google Scholar 

  82. Chen X, Xie R, Lai Z, Liu L, Yan J, Zou G (2017) Interfacial structure and formation mechanism of ultrasonic-assisted brazed joint of SiC ceramics with Al 12Si filler metals in air. J Mater Sci Technol 33(5):492–498. https://doi.org/10.1016/j.jmst.2016.03.016

    Article  Google Scholar 

  83. Wu B, Guo W, He J, Xiu Z, Yan J (2018) Microstructure evolution of SiC/SiC joints during ultrasonic-assisted air bonding using a Sn–Zn–Al alloy. Ceram Int 44(2):1284–1290. https://doi.org/10.1016/j.ceramint.2017.07.169

    Article  Google Scholar 

  84. Wu B, Leng X, Xiu Z, Yan J (2018) Microstructural evolution of SiC joints soldered using Zn-Al filler metals with the assistance of ultrasound. Ultrason Sonochem 44:280–287. https://doi.org/10.1016/j.ultsonch.2018.02.037

    Article  Google Scholar 

  85. Xiao Y, Zhang Y, Zhao K, Li S, Wang L, Xiao J, Liu L (2017) Ultrasound-assisted soldering of alumina using Ni-foam reinforced Sn-based composite solders. Ceram Int 43(16):14314–14320. https://doi.org/10.1016/j.ceramint.2017.07.185

    Article  Google Scholar 

  86. Xu H, Yan J, Xu Z, Zhang B, Yang S (2006) Interface structure changes during vibration liquid phase bonding of SiCp/A356 composites in air. Compos A: Appl Sci Manuf 37(9):1458–1463. https://doi.org/10.1016/j.compositesa.2005.06.017

    Article  Google Scholar 

  87. Yan JC, Xu HB, Shi L, Wang XL, Yang SQ (2013) Vibration assisted brazing of SiCp/A356 composites: microstructure and mechanical behaviour. Sci Technol Weld Join 13(8):760–764. https://doi.org/10.1179/136217108x333318

    Article  Google Scholar 

  88. Zhang Y, Yan J, Chen X, Cui Y (2010) Ultrasonic dissolution of brazing of 55% SiCp/A356 composites. Trans Nonferrous Metals Soc China 20(5):746–750. https://doi.org/10.1016/s1003-6326(09)60208-9

    Article  Google Scholar 

  89. Xu Z, Yan J, Wu G, Kong X, Yang S (2005) Interface structure and strength of ultrasonic vibration liquid phase bonded joints of Al2O3p/6061Al composites. Scr Mater 53(7):835–839. https://doi.org/10.1016/j.scriptamat.2005.06.009

    Article  Google Scholar 

  90. Xu Z, Yan J, Wu G, Kong X, Yang S (2005) Interface structure of ultrasonic vibration aided interaction between Zn–Al alloy and Al2O3p/6061Al composite. Compos Sci Technol 65(13):1959–1963. https://doi.org/10.1016/j.compscitech.2005.02.004

    Article  Google Scholar 

  91. Xiao Y, Ji H, Li M, Kim J (2013) Ultrasound-assisted brazing of Cu/Al dissimilar metals using a Zn–3Al filler metal. Mater Des (1980-2015) 52:740-747. doi:https://doi.org/10.1016/j.matdes.2013.06.016

  92. Xiao Y, Ji H, Li M, Kim J (2014) Ultrasound-induced equiaxial flower-like CuZn5/Al composite microstructure formation in Al/Zn–Al/Cu joint. Mater Sci Eng A 594:135–139. https://doi.org/10.1016/j.msea.2013.11.063

    Article  Google Scholar 

  93. Zhang H, Cui W, He J, Yan J, Yang S (2015) Formation and evolution of intermetallic compounds at interfaces of Cu/Al joints by ultrasonic-assisted soldering. J Mater Process Technol 223:1–7. https://doi.org/10.1016/j.jmatprotec.2015.03.019

    Article  Google Scholar 

  94. Xu Z, Li Z, Li J, Ma Z, Yan J (2018) Control Al/Mg intermetallic compound formation during ultrasonic-assisted soldering Mg to Al. Ultrason Sonochem 46:79–88. https://doi.org/10.1016/j.ultsonch.2018.04.010

    Article  Google Scholar 

  95. Xu Z, Li Z, Xu L, Yan J (2018) Reduction of intermetallic compounds in ultrasonic-assisted semi-solid brazing of Al/Mg alloys. Sci Technol Weld Join 24(2):163–170. https://doi.org/10.1080/13621718.2018.1498657

    Article  Google Scholar 

  96. Xu Z, Li Z, Peng B, Ma Z, Yan J (2018) Application of a new ultrasonic-assisted semi-solid brazing on dissimilar Al/Mg alloys. Mater Lett 228:72–76. https://doi.org/10.1016/j.matlet.2018.05.131

    Article  Google Scholar 

  97. Xu Z, Li Z, Zhao D, Liu X, Yan J (2019) Effects of Zn on intermetallic compounds and strength of Al/Mg joints ultrasonically soldered in air. J Mater Process Technol 271:384–393. https://doi.org/10.1016/j.jmatprotec.2019.04.019

    Article  Google Scholar 

  98. Li Z, Xu Z, Zhu D, Ma Z, Yan J (2018) Control of Mg2Sn formation through ultrasonic-assisted transient liquid phase bonding of Mg to Al. J Mater Process Technol 255:524–529. https://doi.org/10.1016/j.jmatprotec.2018.01.003

    Article  Google Scholar 

  99. Ma Z, Zhao W, Yan J, Li D (2011) Interfacial reaction of intermetallic compounds of ultrasonic-assisted brazed joints between dissimilar alloys of Ti6Al4V and Al4Cu1Mg. Ultrason Sonochem 18(5):1062–1067. https://doi.org/10.1016/j.ultsonch.2011.03.025

    Article  Google Scholar 

  100. Chen X, Xie R, Lai Z, Liu L, Zou G, Yan J (2016) Ultrasonic-assisted brazing of Al–Ti dissimilar alloy by a filler metal with a large semi-solid temperature range. Mater Des 95:296–305. https://doi.org/10.1016/j.matdes.2016.01.109

    Article  Google Scholar 

  101. Ma Z, Yu H, Xu Z, Ma S, Cui W Formation of amorphous interfacial layer between Zn-based alloy and SiC particles under ultrasonic-assisted brazing.

  102. Yang H, Tan Q, Ji H, Wang Z, Xu W, Li M (2019) Dissolution and nucleation behavior of Al in Ta/Sn/Al joints during ultrasonic-assisted soldering. Mater Lett 252:103–105. https://doi.org/10.1016/j.matlet.2019.05.103

    Article  Google Scholar 

  103. Yang H, Tan Q, Ji H, Xu W, Wang Z, Li M (2019) Nucleation behavior of Mg2Sn on Ta surface during ultrasonic-assisted soldering of Ta/Sn/Mg joint. J Mater Sci Mater Electron 30(18):17239–17244. https://doi.org/10.1007/s10854-019-02071-9

    Article  Google Scholar 

  104. Ji H, Li L, Wang L, Li M (2015) Microstructures and properties of the Fe-based amorphous foil/aluminum dissimilar joint by ultrasonic-assisted soldering. Welding in the World 59(5):623–628. https://doi.org/10.1007/s40194-015-0237-0

    Article  Google Scholar 

  105. Ji H, Li L, Li M (2015) Low-temperature joining of Fe-based amorphous foil with aluminum by ultrasonic-assisted soldering with Sn-based fillers. Mater Des 84:254–260. https://doi.org/10.1016/j.matdes.2015.06.112

    Article  Google Scholar 

  106. Xu C, Lang Q, Wang Q, Chen Y, Yan J, Chen S (2019) Microstructure and mechanical properties of ultrasound-assisted soldered Al-50 wt.%Si/Al-27 wt.%Si joints for automotive applications. Jom 71(6):2025–2032. https://doi.org/10.1007/s11837-019-03337-7

    Article  Google Scholar 

  107. Lang Q, Wang Q, Han J, Zhang W, Zhang Y, Yan J (2019) Microstructure evolution of Mg/Cu dissimilar metal jointed by ultrasonic-induced transient liquid phase bonding with Zn interlayer. Mater Charact 157. https://doi.org/10.1016/j.matchar.2019.109897

  108. Naka M, Hafez K (2003) Applying of ultrasonic waves on brazing of alumina to copper using Zn-Al filler alloy. J Mater Sci 38:3491–3494. https://doi.org/10.1023/A:1025161120349

    Article  Google Scholar 

  109. Ji H, Chen H, Li M (2014) Microstructures and properties of alumina/copper joints fabricated by ultrasonic-assisted brazing for replacing DBC in power electronics packaging. doi:https://doi.org/10.1109/ICEPT.2014.6922880

  110. Ji H, Chen H, Li M (2017) Overwhelming reaction enhanced by ultrasonics during brazing of alumina to copper in air by Zn-14Al hypereutectic filler. Ultrason Sonochem 35(Pt A):61–71. https://doi.org/10.1016/j.ultsonch.2016.09.003

    Article  Google Scholar 

  111. Ji H, Chen H, Li M (2017) Effect of ultrasonic transmission rate on microstructure and properties of the ultrasonic-assisted brazing of Cu to alumina. Ultrason Sonochem 34:491–495. https://doi.org/10.1016/j.ultsonch.2016.06.031

    Article  Google Scholar 

  112. Yi R, Chen C, Li Y, Peng H, Zhang H, Ren X (2020) The bonding between glass and metal. Int J Adv Manuf Technol 111(3-4):963–983. https://doi.org/10.1007/s00170-020-06018-x

    Article  Google Scholar 

Download references

Funding

This research work is supported by the National Natural Science Foundation of China (Grant No. 51805416), Young Elite Scientists Sponsorship Program by CAST, Natural Science Foundation of Hunan Province (Grant No. 2020JJ5716), Natural Science Basic Research Plan in Shanxi Province of China (Grant No. 2019JQ-372), the Project of State Key Laboratory of High Performance Complex Manufacturing, Central South University (Grant No. ZZYJKT2019-01), and Huxiang High-Level Talent Gathering Project of HUNAN Province (Grant No. 2019RS1002).

Author information

Authors and Affiliations

Authors

Contributions

Chao Chen conceived and designed the experiments; Hao Peng performed the experiments; XiaoQiang Ren and Denglin Qin analyzed the data; Chao Chen and XiangKun Ran contributed reagents/materials/analysis tools; Chao Chen and Hao Peng wrote the paper.

Corresponding author

Correspondence to Chao Chen.

Ethics declarations

Consent for publication

All authors have read and agreed to the published version of the manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Chen, C. & Yi, R. Recent development of ultrasonic brazing. Int J Adv Manuf Technol 114, 27–62 (2021). https://doi.org/10.1007/s00170-021-06885-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-06885-y

Keywords

Navigation