Skip to main content
Log in

Coated CBN cutting tool performance in green turning of gray cast iron EN-GJL-250: modeling and optimization

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The present research investigates the performance of a TiN/PVD-coated CBN7050 tool when turning the gray cast iron EN-GJL-250. This is performed through carrying out two series of tests. The first are parametric tests aiming at evaluating the effect of each cutting parameter, i.e., the cutting speed, the feed rate and the depth of cut on the cutting forces, the cutting pressure, the surface roughness, and the cutting power. The second series of tests concern the modeling that would lead to predicting the output parameters. Both the analysis of variance and the response surface methodology are selected to develop the relationship between the input factors (Vc, f, and Doc) and the output parameters. The tests are carried out according to the Taguchi design (L27). The derived models are used to perform a multi-objective optimization of the cutting parameters through the application of the desirability function approach (DFA) for four objectives. Furthermore, the CBN7050 tool wear behavior was investigated during the machining of gray cast iron EN-GJL-250. Tool lives reached 7, 18, and 41.5 min when Vc was varied from 450, 600, to 750 m/min, respectively. Finally, a topographical analysis of the machined surface 3D roughness was carried out for different cutting parameters and led to displaying the texture of the surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Yallese MA, Boulanouar L, Chaoui K (2004) Usinage de l'acier 100Cr6 trempé par un outil en nitrure de bore cubique. Mec Ind 5(4):355–368. https://doi.org/10.1051/meca:2004036

    Article  Google Scholar 

  2. Diniz AE, De Oliveira AJ (2008) Hard turning of interrupted surfaces using CBN tools. J Mater Process Technol 195(1-3):275–281

    Article  Google Scholar 

  3. Yallese MA, Chaoui K, Zeghib N, Boulanouar L, Rigal JF (2009) Hard machining of hardened bearing steel using cubic boron nitride tool. J Mater Process Technol 209(2):1092–1104

    Article  Google Scholar 

  4. Kadu RS, Awari GK, Sakhale CN, Modak JP (2014) Formulation of mathematical model for the investigation of tool wears in boring machining operation on cast iron using carbide and CBN tools. Procedia Mater Sci 6:1710–1724. https://doi.org/10.1016/j.mspro.2014.07.157

    Article  Google Scholar 

  5. Ravi AM, Murigendrappa SM, Mukunda PG (2014) Experimental investigation of influence of tool temperature on cutting forces in the thermally enhanced machining of high chrome white cast iron. Procedia Mater Sci 5:2099–2104

    Article  Google Scholar 

  6. Chen L, Zhou J, Bushlya V, Stahl JE (2015) Influences of micro mechanical property and microstructure on performance of machining high chromium white cast iron with CBN tools. Procedia CIRP 31:172–178. https://doi.org/10.1016/j.procir.2015.03.092

    Article  Google Scholar 

  7. Gutnichenko O, Bushlya V, Zhou JM, Stahl JE (2016) Tool wear and vibrations generated when turning high-chromium white cast iron with pCBN tools. Procedia CIRP 46:285–289. https://doi.org/10.1016/j.procir.2016.04.005

    Article  Google Scholar 

  8. Wetzel S (2019) Woodland/alloy and its promising future. Modern Casting, a publication of the American foundry society pp 16–20

  9. Riahi AR, Alpas AT (2003) Wear map for grey cast iron. Wear 255(1-6):401–409. https://doi.org/10.1016/S0043-1648(03)00100-5

    Article  Google Scholar 

  10. Souza JVC, Nono MD, Oliveira RDM, Ribeiro MV, Silva OMM (2008) Study of cutting forces on machinability properties of gray cast iron using new ceramics cutting tools. Mater Sci Forum 591:598–603. https://doi.org/10.4028/www.scientific.net/MSF.591-593.598

    Article  Google Scholar 

  11. Shintani K, Kato H, Sugita H, Suzuki N (1998) Wear mechanism of PcBN tool in high speed machining of gray cast iron. Int J Jpn Soc Precis Eng 64:261–226

    Article  Google Scholar 

  12. Gastel M, Konetschny C, Reuter U, Fasel C, Schulz H, Riedel R, Ortner HM (2000) Investigation of the wear mechanism of cubic boron nitride tools used for the machining of compacted graphite iron and grey cast iron. Int J Refract Met Hard Mater 18(6):287–296. https://doi.org/10.1016/S0263-4368(00)00032-9

    Article  Google Scholar 

  13. Kato H, Shintani K, Sumiya H (2002) Cutting performance of a binder-less sintered cubic boron nitride tool in the high-speed milling of gray cast iron. J Mater Process Technol 127(2):217–221. https://doi.org/10.1016/S0924-0136(02)00145-0

    Article  Google Scholar 

  14. Katuku K, Koursaris A, Sigalas I (2009) Wear, cutting forces and chip characteristics when dry turning ASTM Grade 2 austempered ductile iron with PcBN cutting tools under finishing conditions. J Mater Process Technol 209:2412–2420. https://doi.org/10.1016/j.jmatprotec.2008.05.042

    Article  Google Scholar 

  15. De Souza Jr AM, Sales WF, Santos SC, Machado AR (2005) Performance of single Si3N4 and mixed Si3N4+ PCBN wiper cutting tools applied to high speed face milling of cast iron. Int J Mach Tools Manuf 45(3):335–344. https://doi.org/10.1016/j.ijmachtools.2004.08.006

    Article  Google Scholar 

  16. Pereira AA, Boehs L, Guesser WL (2006) The influence of sulfur on the machinability of gray cast iron FC25. J Mater Process Technol 179(1-3):165–171. https://doi.org/10.1016/j.jmatprotec.2006.03.100

    Article  Google Scholar 

  17. Souza JVC, Nono MCA, Ribeiro MV, Machado JPB, Silva OMM (2009) Cutting forces in turning of gray cast iron using silicon nitride based cutting tool. Mater Des 30(7):2715–2720. https://doi.org/10.1016/j.matdes.2008.09.041

    Article  Google Scholar 

  18. Yücel E, Günay M (2013) Modeling and optimization of the cutting conditions in hard turning of high-alloy white cast iron (Ni-Hard). Proc Inst Mech Eng C J Mech Eng Sci 227(10):2280–2290. https://doi.org/10.1177/0954406212471755

    Article  Google Scholar 

  19. Li B (2014) An experimental investigation of dry cutting performance for machining gray cast iron with carbide coating tool. Int J Adv Manuf Technol 71(5-8):1093–1098. https://doi.org/10.1007/s00170-013-5548-y

    Article  Google Scholar 

  20. Fiorini P, Byrne G (2016) The influence of built-up layer formation on cutting performance of GG25 grey cast iron. CIRP Ann 65(1):93–96. https://doi.org/10.1016/j.cirp.2016.04.045

    Article  Google Scholar 

  21. Chen J, Liu W, Deng X, Wu S (2016) Tool life and wear mechanism of WC–5TiC–0.5 VC–8Co cemented carbides inserts when machining HT250 gray cast iron. Ceram Int 42(8):10037–10044. https://doi.org/10.1016/j.ceramint.2016.03.107

    Article  Google Scholar 

  22. Ghani JA, Rizal M, Haron CHC (2014) Performance of green machining: a comparative study of turning ductile cast iron FCD700. J Clean Prod 85:289–292. https://doi.org/10.1016/j.jclepro.2014.02.029

    Article  Google Scholar 

  23. Tooptong S, Park KH, Lee SW, Kwon PY (2016) A preliminary machinability study of flake and compacted graphite irons with multilayer coated and uncoated carbide inserts. Procedia Manuf 5:644–657. https://doi.org/10.1016/j.promfg.2016.08.053

    Article  Google Scholar 

  24. Laouissi A, Yallese MA, Belbah A, Belhadi S, Haddad A (2019) Investigation, modeling, and optimization of cutting parameters in turning of gray cast iron using coated and uncoated silicon nitride ceramic tools. Based on ANN, RSM, and GA optimization. Int J Adv Manuf Technol 101(1-4):523–548. https://doi.org/10.1007/s00170-018-2931-8

    Article  Google Scholar 

  25. Laouissi A, Yallese MA, Belbah A, Khellaf A, Haddad A (2019) Comparative study of the performance of coated and uncoated silicon nitride (Si 3 N 4) ceramics when machining EN-GJL-250 cast iron using the RSM method and 2D and 3D roughness functional parameters. J Braz Soc Mech Sci Eng 41(5):205. https://doi.org/10.1007/s40430-019-1708-9

    Article  Google Scholar 

  26. Luqiang T, Shuai T, Feng X, Xue W et al (2020) Cutting performance of cubic boron nitride-coated tools in dry turning of hardened ductile iron. J Manuf Process 56:158–168. https://doi.org/10.1016/j.jmapro.2020.04.081

    Article  Google Scholar 

  27. Coromant SANDVIK Catalogue Général (2009) Outils de coupe Sandvik Coromant, Tournage–Fraisage–Perçage–Alésage-Attachements.

  28. Hessainia Z, Belbah A, Yallese MA, Mabrouki T, Rigal JF (2013) On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations. Measurement 46(5):1671–1681

    Article  Google Scholar 

  29. Toh CK (2004) Static and dynamic cutting force analysis when high speed rough milling hardened steel. Mater Des 25(1):41–50. https://doi.org/10.1016/j.measurement.2012.12.016

    Article  Google Scholar 

  30. Camuşcu N (2006) Effect of cutting speed on the performance of Al2O3 based ceramic tools in turning nodular cast iron. Mater Des 27(10):997–1006. https://doi.org/10.1016/j.matdes.2005.02.011

    Article  Google Scholar 

  31. Parhad P, Dakre V, Likhite A, Bhatt J (2019) The impact of cutting speed and depth of cut on cutting force during turning of austempered ductile iron. Mater Today Proc 19:663–669. https://doi.org/10.1016/j.matpr.2019.07.750

    Article  Google Scholar 

  32. Yigit R, Celik E, Findik F, Koksal S (2008) Tool life performance of multilayer hard coatings produced by HTCVD for machining of nodular cast iron. Int J Refract Met Hard Mater 26(6):514–524. https://doi.org/10.1016/j.ijrmhm.2007.12.003

    Article  Google Scholar 

  33. Fnides B, Aouici H, Elbah M, Boutabba S, Boulanouar L (2015) Comparison between mixed ceramic and reinforced ceramic tools in terms of cutting force components modeling and optimization when machining hardened steel AISI 4140 (60 HRC). Mec Ind 16(6):609. https://doi.org/10.1051/meca/2015036

    Article  Google Scholar 

  34. Aouici H, Elbah M, Yallese MA, Fnides B, Meddour I, Benlahmidi S (2016) Performance comparison of wiper and conventional ceramic inserts in hard turning of AISI 4140 steel: analysis of machining forces and flank wear. Int J Adv Manuf Technol 87(5-8):2221–2244. https://doi.org/10.1007/s00170-016-8567-7

    Article  Google Scholar 

  35. Aouici H, Yallese MA, Chaoui K, Mabrouki T, Rigal JF (2012) Analysis of surface roughness and cutting force components in hard turning with CBN tool: prediction model and cutting conditions optimization. Measurement 45(3):344–353. https://doi.org/10.1016/j.measurement.2011.11.011

    Article  Google Scholar 

  36. Bouchelaghem H, Yallese MA, Mabrouki T, Amirat A, Rigal JF (2010) Experimental investigation and performance analyses of CBN insert in hard turning of cold work tool steel (D3). Mach Sci Technol 14(4):471–501. https://doi.org/10.1080/10910344.2010.533621

    Article  Google Scholar 

  37. Yallese MA, Boulanouar L, Belhadi S, Ouelaa N (2007) INFLUENCE DES CONDITIONS D’USINAGE SUR LES EFFORTS DE COUPE LORS DU TOURNAGE DU 100Cr6 (60HRC) AVEC LE CBN. Sciences and Technologie. B, Sciences de l'ingénieur 7-13.

  38. Guo Y, Loenders J, Duflou J, Lauwers B (2012) Optimization of energy consumption and surface quality in finish turning. Procedia CIRP 1:512–517. https://doi.org/10.1016/j.procir.2012.04.091

    Article  Google Scholar 

  39. Zerti A, Yallese MA, Meddour I, Belhadi S, Haddad A, Mabrouki T (2019) Modeling and multi-objective optimization for minimizing surface roughness, cutting force, and power, and maximizing productivity for tempered stainless steel AISI 420 in turning operations. Int J Adv Manuf Technol 102(1-4):135–157. https://doi.org/10.1007/s00170-018-2984-8

    Article  Google Scholar 

  40. Selaimia AA, Yallese MA, Bensouilah H, Meddour I, Khattabi R, Mabrouki T (2017) Modeling and optimization in dry face milling of X2CrNi18-9 austenitic stainless-steel using RMS and desirability approach. Measurement 107:53–67. https://doi.org/10.1016/j.measurement.2017.05.012

    Article  Google Scholar 

  41. Bensouilah H, Aouici H, Meddour I, Yallese MA, Mabrouki T, Girardin F (2016) Performance of coated and uncoated mixed ceramic tools in hard turning process. Measurement 82:1–18. https://doi.org/10.1016/j.measurement.2015.11.042

    Article  Google Scholar 

  42. Subramanian M, Sakthivel M, Sooryaprakash K, Sudhakaran R (2013) Optimization of cutting parameters for cutting force in shoulder milling of Al7075-T6 using response surface methodology and genetic algorithm. Procedia Eng 64:690–700. https://doi.org/10.1016/j.proeng.2013.09.144

    Article  Google Scholar 

  43. Bouacha K, Yallese MA, Mabrouki T, Rigal JF (2010) Statistical analysis of surface roughness and cutting forces using response surface methodology in hard turning of AISI 52100 bearing steel with CBN tool. Int J Refract Met Hard Mater 28(3):349–361. https://doi.org/10.1016/j.ijrmhm.2009.11.011

    Article  Google Scholar 

  44. Bouacha K, Yallese MA, Khamel S, Belhadi S (2014) Analysis and optimization of hard turning operation using cubic boron nitride tool. Int J Refract Met Hard Mater 45:160–178. https://doi.org/10.1016/j.ijrmhm.2014.04.014

    Article  Google Scholar 

  45. Benlahmidi S, Aouici H, Boutaghane F, Khellaf A, Fnides B, Yallese MA (2017) Design optimization of cutting parameters when turning hardened AISI H11 steel (50 HRC) with CBN7020 tools. Int J Adv Manuf Technol 89(1-4):803–820. https://doi.org/10.1007/s00170-016-9121-3

    Article  Google Scholar 

  46. Yallese MA, Rigal JF, Chaoui K, Boulanouar L (2005) The effects of cutting conditions on mixed ceramic and cubic boron nitride tool wear and on surface roughness during machining of X200Cr12 steel (60 HRC). Proc Inst Mech Eng B J Eng Manuf 219(1):35–55. https://doi.org/10.1243/095440505X8082

    Article  Google Scholar 

  47. Yallese MA, Chaoui K, Zeghib N, Boulanouar L, Rigal JF (2009) Hard machining of hardened bearing steel using cubic boron nitride tool. J Mater Process Technol 209(2):1092–1104. https://doi.org/10.1016/j.jmatprotec.2008.03.014

    Article  Google Scholar 

  48. Bouchelaghem H, Yallese MA, Amirat A, Belhadi S (2007) Wear behaviour of CBN tool when turning hardened AISI D3 steel. Mechanics 65(3):57–65

    Google Scholar 

  49. Chen T, Li S, Han B, Liu G (2014) Study on cutting force and surface micro-topography of hard turning of GCr15 steel. Int J Adv Manuf Technol 72(9-12):1639–1645. https://doi.org/10.1007/s00170-014-5778-7

    Article  Google Scholar 

  50. Harrington Edwin Jr C (1965) The desirability function/Harrington EC. Ind Qual Control:494–498

  51. Derringer G, Suich R (1980) Simultaneous optimization of several response variables. J Qual Technol 12(4):214–219

    Article  Google Scholar 

Download references

Funding

The present research was undertaken by the “Metal Cutting Research Group” of the Structures and Mechanics Laboratory (LMS) of the 8 May 1945-Guelma University, Algeria, and received funding from the General Directorate of Scientific Research and Technological Development (DGRSDT) under the PRFU research project A11N01UN240120190001.

Author information

Authors and Affiliations

Authors

Contributions

Salim Chihaoui, roughness tests, cutting forces measurement; Mohamed A. Yallese, tests conceptualization, results analysis, supervision; Salim Belhadi, wear tests; Ahmed Belbah, modeling, statistical analysis; Khaoula Safi, 3D roughness tests, results analysis; Abdelkrim Haddad, writing of original draft, review, and editing.

Corresponding author

Correspondence to Salim Chihaoui.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chihaoui, S., Yallese, M.A., Belhadi, S. et al. Coated CBN cutting tool performance in green turning of gray cast iron EN-GJL-250: modeling and optimization. Int J Adv Manuf Technol 113, 3643–3665 (2021). https://doi.org/10.1007/s00170-021-06820-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-06820-1

Keywords

Navigation