Skip to main content
Log in

Development of a frictionally damped boring bar for chatter suppression in boring process

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A novel boring bar was developed for chatter reduction of machining processes. By proposing an internal frictional damping structure, additional energy dissipation during bending vibrations was imposed to the boring bar. The structure consisted of some pins longitudinally press-fitted inside the boring bar. This structure resisted against bending of the boring bar during machining processes. After introducing the structure, an analytical model was presented to determine the amount of energy dissipated by the damper. Using the analytical model and finite element modeling (FEM), the most effective configuration was obtained for the proposed frictional damper structure. After determining the best configuration, a damped boring bar specimen was fabricated for experimental comparison with a regular boring bar. The modal and cutting tests were performed on the specimens. The modal test revealed a significant increase in the structural damping of the boring bar. The cutting tests were performed at different depths of cut and different spindle speeds, and the process was investigated through sound analysis and surface finish observation. Experimental comparisons indicated the higher performance of the proposed tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A c :

Sound amplitude at the chatter frequency

A(i), A(t):

The sound amplitude of the ith sample or at time (t)

A rms :

Root mean square of the sound amplitude in the time domain

a :

Depth of cut (mm)

D i :

The slip on the contact surfaces of the ith pin (Analytical model)

d i :

The absolute value of relative displacement on the ith contact node (FEM)

E :

The equal elasticity modulus for all parts

E b, E i :

Elasticity modulus for tool body and ith pin individually

e :

Contact surfaces interference

F :

The total lateral force applied to the tooltip

F b, F i :

The portion of F applied to the tool body and the ith pin

Gxx, Gyy :

Direct FRFs at the tool tip in x and y directions (regular/damped tools)

Gxy, Gyx :

Cross FRFs at the tool tip in x and y directions (regular/damped tools)

I :

The overall moment of inertia of the tool body and pins

I b, I i :

The moments of inertia for the tool body and pins individually

L :

Free length of the tool

N c :

Number of contact nodes in the FEM

n :

Number of inserted pins

P ave :

The average contact pressure for all pins

P i :

Contact pressure on the ith pin

R :

Radius of the circle where center of pins are located on

R max, R min :

Maximum and minimum radii of the tool body

∆:

Lateral deflection at the tooltip

δ b, δ i :

Displacement of tool body and ith pin on contact surfaces

ε b, ε i :

Strain of tool body and ith pin on contact surfaces

θ :

The angular variable around each pin (0 ≤ θ < 2π)

ζ1 :

Damping ratio of the (regular/damped) tool related to the first resonance

μ, μ i :

Friction constant of the pins or the ith pin

σ i :

Normal contact pressure on the ith contact node of the FEM

τ i :

Tangential frictional stress on the ith contact node of the FEM

ϕ :

Constant angular distance between two neighbor pins (ϕ = 2π/n)

ϕ i :

Angular distance between positive direction of x-axis on neutral axis of the tool and the ith pin

Ω :

Spindle speed (rpm)

ω1 :

The first natural frequency of the (regular/damped) tool in lateral directions (Hz)

ω c :

Chatter frequency (Hz)

ω s :

Sampling frequency of digital sound recording (Hz)

References

  1. Siddhpura M, Paurobally R (2012) A review of chatter vibration research in turning. Int J Mach Tools Manuf 61:27–47. https://doi.org/10.1016/j.ijmachtools.2012.05.007

    Article  Google Scholar 

  2. Munoa J, Beudaert X, Dombovari Z, Altintas Y, Budak E, Brecher C, Stepan G (2016) Chatter suppression techniques in metal cutting. CIRP Ann 65(2):785–808. https://doi.org/10.1016/j.cirp.2016.06.004

    Article  Google Scholar 

  3. Yue C, Gao H, Liu X, Liang SY, Wang L (2019) A review of chatter vibration research in milling. Chin J Aeronaut 32(2):215–242. https://doi.org/10.1016/j.cja.2018.11.007

    Article  Google Scholar 

  4. Vasanth XA, Paul PS, Lawrance G, Varadarajan AS (2019) Vibration control techniques during turning process: a review. Aust J Mech Eng:1–21. https://doi.org/10.1080/14484846.2019.1585224

  5. Yang F, Zhang B, Yu J (2003) Chatter suppression with multiple time-varying parameters in turning. J Mater Process Technol 141(3):431–438. https://doi.org/10.1016/S0924-0136(03)00427-8

    Article  Google Scholar 

  6. Yusoff AR, Sims ND (2011) Optimisation of variable helix tool geometry for regenerative chatter mitigation. Int J Mach Tools Manuf 51(2):133–141. https://doi.org/10.1016/j.ijmachtools.2010.10.004

    Article  Google Scholar 

  7. Comak A, Budak E (2017) Modeling dynamics and stability of variable pitch and helix milling tools for development of a design method to maximize chatter stability. Precis Eng 47:459–468. https://doi.org/10.1016/j.precisioneng.2016.09.021

    Article  Google Scholar 

  8. Lin C-Y, Yeh S-S (2020) Integration of cutting force control and chatter suppression control into automatic cutting feed adjustment system design. Mach Sci Technol 24(1):65–95. https://doi.org/10.1080/10910344.2019.1636265

    Article  Google Scholar 

  9. Otto A, Radons G (2013) Application of spindle speed variation for chatter suppression in turning. CIRP J Manuf Sci Technol 6(2):102–109. https://doi.org/10.1016/j.cirpj.2013.02.002

    Article  Google Scholar 

  10. Shamoto E, Mori T, Sencer B, Suzuki N, Hino R (2013) Suppression of regenerative chatter vibration in multiple milling utilizing speed difference method – analysis of double-sided milling and its generalization to multiple milling operations. Precis Eng 37(3):580–589. https://doi.org/10.1016/j.precisioneng.2013.01.003

    Article  Google Scholar 

  11. Yamato S, Ito T, Matsuzaki H, Kakinuma Y (2018) Programmable optimal design of sinusoidal spindle speed variation for regenerative chatter suppression. Procedia Manuf 18:152–160. https://doi.org/10.1016/j.promfg.2018.11.020

    Article  Google Scholar 

  12. Wang C, Zhang X, Yan R, Chen X, Cao H (2019) Multi harmonic spindle speed variation for milling chatter suppression and parameters optimization. Precis Eng 55:268–274. https://doi.org/10.1016/j.precisioneng.2018.09.017

    Article  Google Scholar 

  13. Petrakov Y (2019) Chatter suppression technologies for metal cutting. Mech Adv Technol 2(86):51–60. https://doi.org/10.20535/2521-1943.2019.86.185849

    Article  Google Scholar 

  14. Gienke O, Pan Z, Yuan L, Lepper T, Van Duin S (2019) Mode coupling chatter prediction and avoidance in robotic machining process. Int J Adv Manuf Technol 104(5):2103–2116. https://doi.org/10.1007/s00170-019-04053-x

    Article  Google Scholar 

  15. Albertelli P, Musletti S, Leonesio M, Bianchi G, Monno M (2012) Spindle speed variation in turning: technological effectiveness and applicability to real industrial cases. Int J Adv Manuf Technol 62(1):59–67. https://doi.org/10.1007/s00170-011-3790-8

    Article  Google Scholar 

  16. Albertelli P, Mussi V, Ravasio C, Monno M (2012) An experimental investigation of the effects of spindle speed variation on tool wear in turning. Procedia CIRP 4:29–34. https://doi.org/10.1016/j.procir.2012.10.006

    Article  Google Scholar 

  17. Sallese L, Scippa A, Grossi N, Campatelli G (2016) Investigating actuation strategies in active fixtures for chatter suppression. Procedia CIRP 46:311–314. https://doi.org/10.1016/j.procir.2016.04.073

    Article  Google Scholar 

  18. Sallese L, Grossi N, Tsahalis J, Scippa A, Campatelli G (2016) Intelligent fixtures for active chatter control in milling. Procedia CIRP 55:176–181. https://doi.org/10.1016/j.procir.2016.08.019

    Article  Google Scholar 

  19. Munoa J, Mancisidor I, Loix N, Uriarte LG, Barcena R, Zatarain M (2013) Chatter suppression in ram type travelling column milling machines using a biaxial inertial actuator. CIRP Ann 62(1):407–410. https://doi.org/10.1016/j.cirp.2013.03.143

    Article  Google Scholar 

  20. Dohner JL, Lauffer JP, Hinnerichs TD, Shankar N, Regelbrugge M, Kwan C-M, Xu R, Winterbauer B, Bridger K (2004) Mitigation of chatter instabilities in milling by active structural control. J Sound Vib 269(1):197–211. https://doi.org/10.1016/S0022-460X(03)00069-5

    Article  Google Scholar 

  21. Li D, Cao H, Zhang X, Chen X, Yan R (2019) Model predictive control based active chatter control in milling process. Mech Syst Signal Process 128:266–281. https://doi.org/10.1016/j.ymssp.2019.03.047

    Article  Google Scholar 

  22. Zhang X, Wang C, Liu J, Yan R, Cao H, Chen X (2019) Robust active control based milling chatter suppression with perturbation model via piezoelectric stack actuators. Mech Syst Signal Process 120:808–835. https://doi.org/10.1016/j.ymssp.2018.10.043

    Article  Google Scholar 

  23. Moradian H, Abbasi MH, Moradi H (2020) Adaptive sliding mode control of regenerative chatter and stability improvement in boring manufacturing process with model uncertainties. Proc Inst Mech Eng C J Mech Eng Sci 234(6):1171–1181

    Article  Google Scholar 

  24. Wan S, Li X, Su W, Yuan J, Hong J, Jin X (2019) Active damping of milling chatter vibration via a novel spindle system with an integrated electromagnetic actuator. Precis Eng 57:203–210. https://doi.org/10.1016/j.precisioneng.2019.04.007

    Article  Google Scholar 

  25. Alammari Y, Sanati M, Freiheit T, Park SS (2015) Investigation of boring bar dynamics for chatter suppression. Procedia Manuf 1:768–778. https://doi.org/10.1016/j.promfg.2015.09.059

    Article  Google Scholar 

  26. Hayati S, Hajaliakbari M, Rajabi Y, Rasaee S (2017) Chatter reduction in slender boring bar via a tunable holder with variable mass and stiffness. Proc Inst Mech Eng B J Eng Manuf 232(12):2098–2108. https://doi.org/10.1177/0954405417690554

    Article  Google Scholar 

  27. Burtscher J, Fleischer J (2017) Adaptive tuned mass damper with variable mass for chatter avoidance. CIRP Ann 66(1):397–400. https://doi.org/10.1016/j.cirp.2017.04.059

    Article  Google Scholar 

  28. Wang C, Zhang X, Liu Y, Cao H, Chen X (2018) Stiffness variation method for milling chatter suppression via piezoelectric stack actuators. Int J Mach Tools Manuf 124:53–66. https://doi.org/10.1016/j.ijmachtools.2017.10.002

    Article  Google Scholar 

  29. Li D, Cao H, Liu J, Zhang X, Chen X (2019) Milling chatter control based on asymmetric stiffness. Int J Mach Tools Manuf 147:103458. https://doi.org/10.1016/j.ijmachtools.2019.103458

    Article  Google Scholar 

  30. Tang B, Akbari H, Pouya M, Pashaki PV (2019) Application of piezoelectric patches for chatter suppression in machining processes. Measurement 138:225–231. https://doi.org/10.1016/j.measurement.2019.02.003

    Article  Google Scholar 

  31. Mei D, Kong T, Shih AJ, Chen Z (2009) Magnetorheological fluid-controlled boring bar for chatter suppression. J Mater Process Technol 209(4):1861–1870. https://doi.org/10.1016/j.jmatprotec.2008.04.037

    Article  Google Scholar 

  32. Biju CV, Shunmugam MS (2019) Performance of magnetorheological fluid based tunable frequency boring bar in chatter control. Measurement 140:407–415. https://doi.org/10.1016/j.measurement.2019.03.073

    Article  Google Scholar 

  33. Ema S, Marui E (2000) Suppression of chatter vibration of boring tools using impact dampers. Int J Mach Tool Manu 40:1141–1156. https://doi.org/10.1016/S0890-6955(99)00119-4

    Article  Google Scholar 

  34. Miguélez MH, Rubio L, Loya JA, Fernández-Sáez J (2010) Improvement of chatter stability in boring operations with passive vibration absorbers. Int J Mech Sci 52(10):1376–1384. https://doi.org/10.1016/j.ijmecsci.2010.07.003

    Article  Google Scholar 

  35. Yang Y, Muñoa J, Altintas Y (2010) Optimization of multiple tuned mass dampers to suppress machine tool chatter. Int J Mach Tools Manuf 50(9):834–842. https://doi.org/10.1016/j.ijmachtools.2010.04.011

    Article  Google Scholar 

  36. Rubio L, Loya JA, Miguélez MH, Fernández-Sáez J (2013) Optimization of passive vibration absorbers to reduce chatter in boring. Mech Syst Signal Process 41(1):691–704. https://doi.org/10.1016/j.ymssp.2013.07.019

    Article  Google Scholar 

  37. Bansal A, Law M (2018) A receptance coupling approach to optimally tune and place absorbers on boring bars for chatter suppression. Procedia CIRP 77:167–170. https://doi.org/10.1016/j.procir.2018.08.267

    Article  Google Scholar 

  38. Yadav A, Talaviya D, Bansal A, Law M (2020) Design of chatter-resistant damped boring bars using a receptance coupling approach. J Manuf Mater Process 4(2):53

    Google Scholar 

  39. da Silva MM, Venter GS, Varoto PS, Coelho RT (2015) Experimental results on chatter reduction in turning through embedded piezoelectric material and passive shunt circuits. Mechatronics 29:78–85. https://doi.org/10.1016/j.mechatronics.2015.06.002

    Article  Google Scholar 

  40. Yigit U, Cigeroglu E, Budak E (2017) Chatter reduction in boring process by using piezoelectric shunt damping with experimental verification. Mech Syst Signal Process 94:312–321. https://doi.org/10.1016/j.ymssp.2017.02.044

    Article  Google Scholar 

  41. Zhang Z, Li H, Meng G, Ren S (2017) Milling chatter suppression in viscous fluid: a feasibility study. Int J Mach Tools Manuf 120:20–26. https://doi.org/10.1016/j.ijmachtools.2017.02.005

    Article  Google Scholar 

  42. Portentoso M, Pennacchi P, Chatterton S (2017) Comparison of the dynamic response of two columns of milling machines made of standard carpentry and metal foam sandwiches. J Vib Control 23(17):2782–2794. https://doi.org/10.1177/1077546315622355

    Article  Google Scholar 

  43. Marui E, Ema S, Hashimoto M, Wakasawa Y (1998) Plate insertion as a means to improve the damping capacity of a cutting tool system. Int J Mach Tools Manuf 38(10):1209–1220. https://doi.org/10.1016/S0890-6955(98)00001-7

    Article  Google Scholar 

  44. Kim NH, Won D, Ziegert JC (2006) Numerical analysis and parameter study of a mechanical damper for use in long slender endmills. Int J Mach Tools Manuf 46(5):500–507. https://doi.org/10.1016/j.ijmachtools.2005.07.004

    Article  Google Scholar 

  45. Ziegert JC, Stanislaus C, Schmitz TL (2006) Enhanced damping in long slender end mills. J Manuf Process 8(1):39–46

    Article  Google Scholar 

  46. Madoliat R, Hayati S, Ghalebahman AG (2011) Modeling and analysis of frictional damper effect on chatter suppression in a Slender Endmill Tool. J Adv Mech Des Syst Manuf 5(2):115–128

    Article  Google Scholar 

  47. Madoliat R, Hayati S, Ghasemi Ghalebahman A (2011) Investigation of chatter suppression in slender endmill via a frictional damper. Sci Iran 18(5):1069–1077. https://doi.org/10.1016/j.scient.2011.08.008

    Article  Google Scholar 

  48. Moetakef-Imani B, Yussefian NZ (2009) Dynamic simulation of boring process. Int J Mach Tools Manuf 49(14):1096–1103. https://doi.org/10.1016/j.ijmachtools.2009.07.008

    Article  Google Scholar 

  49. Tlusty J (1986) Dynamics of high-speed milling. J Eng Ind 108(2):59–67. https://doi.org/10.1115/1.3187052

    Article  Google Scholar 

  50. Tlusty J (1985) Machine dynamics. In: King RI (ed) Handbook of high speed machining technology. Chapman and Hall, New York, pp 48–153

    Chapter  Google Scholar 

  51. Quintana G, Ciurana J (2011) Chatter in machining processes: a review. Int J Mach Tools Manuf 51(5):363–376. https://doi.org/10.1016/j.ijmachtools.2011.01.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of study, construction of the analytical model, revising the manuscript critically for important intellectual content, and approval of the version of the manuscript to be published: Sajad Hayati. Sample fabrication, performing the experimental tests, analysis and/or interpretation of data, and drafting the manuscript: Mehdi Shahrokhi. FEM analysis, analytical study, and drafting the manuscript: Ali Hedayati.

Corresponding author

Correspondence to Sajad Hayati.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayati, S., Shahrokhi, M. & Hedayati, A. Development of a frictionally damped boring bar for chatter suppression in boring process. Int J Adv Manuf Technol 113, 2761–2778 (2021). https://doi.org/10.1007/s00170-021-06791-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-06791-3

Keywords

Navigation