Skip to main content
Log in

Ultrasonic machining of carbon fiber–reinforced plastic composites: a review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Carbon fiber–reinforced plastic (CFRP) composites are extensively being applied in manufacturing sectors because of their extraordinary characteristics. However, CFRP composites often require some extra machining processes to improve the dimensional accuracy and component integrity of CFRP composites in manufacturing industries. The ultrasonic machining (USM) process progressively has been examined due to its greater ability in machining difficult to cut, brittle, and hard materials such as CFRP composites and due to its relatively low machining cost. Furthermore, USM shows to be a promising process with better surface quality, lower cutting force, less or no fiber fracture, laminate delamination, and lower tool wear rate. Recently, USM has been extensively investigated by many researchers for the machining of CFRP composites. This paper explores the literature and presents a comprehensive review of the advances in USM of CFRP composites by classifying the studies reported in two perspectives. First, the review summarizes most of the reported studies starting from 2011 to 2020 based on the applied USM process, equipment/system/platform used to carry out experiments, considered process parameters and output variables, and challenges investigated or gap filled. Then, the reported studies are summarized considering the type of USM process variant, CFRP composite, adopted process parameters on machining characteristics, and their respective results and conclusions. The aim is to present the current research status in USM of CFRP composites and thus provide guidance and foundation for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13.
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Geng D, Teng Y, Liu Y, Shao Z, Jiang X, Zhang D (2019) Experimental study on drilling load and hole quality during rotary ultrasonic helical machining of small-diameter CFRP holes. J Mater Process Technol 270:195–205. https://doi.org/10.1016/j.jmatprotec.2019.03.001

    Article  Google Scholar 

  2. Xu J, Li C, El Mansori M et al (2018) Study on the Frictional Heat at Tool-work Interface when Drilling CFRP Composites. Procedia Manuf 26:415–423. https://doi.org/10.1016/j.promfg.2018.07.049

    Article  Google Scholar 

  3. Cong WL, Pei ZJ, Deines TW, Treadwell C (2011) Rotary ultrasonic machining of CFRP using cold air as coolant: Feasible regions. J Reinf Plast Compos 30:899–906. https://doi.org/10.1177/0731684411416266

    Article  Google Scholar 

  4. Karpat Y, Bahtiyar O, Deger B (2012) Milling force modelling of multidirectional carbon fiber reinforced polymer laminates. In: Procedia CIRP. Elsevier B.V, Amsterdam, pp 460–465

    Google Scholar 

  5. Jia Z, Su Y, Niu B, Zhang B, Wang F (2016) The interaction between the cutting force and induced sub-surface damage in machining of carbon fiber-reinforced plastics. J Reinf Plast Compos 35:712–726. https://doi.org/10.1177/0731684415626284

    Article  Google Scholar 

  6. Jia Z, Fu R, Niu B, Qian B, Bai Y, Wang F (2016) Novel drill structure for damage reduction in drilling CFRP composites. Int J Mach Tools Manuf 110:55–65. https://doi.org/10.1016/j.ijmachtools.2016.08.006

    Article  Google Scholar 

  7. Ning F, Cong W (2015) Rotary Ultrasonic Machining of CFRP: Design of Experiment With a Cutting Force Model. ASME International, New York

    Google Scholar 

  8. Bonnet C, Poulachon G, Rech J, Girard Y, Costes JP (2015) CFRP drilling: Fundamental study of local feed force and consequences on hole exit damage. Int J Mach Tools Manuf 94:57–64. https://doi.org/10.1016/j.ijmachtools.2015.04.006

    Article  Google Scholar 

  9. Zitoune R, Krishnaraj V, Collombet F (2010) Study of drilling of composite material and aluminium stack. Compos Struct 92:1246–1255. https://doi.org/10.1016/j.compstruct.2009.10.010

    Article  Google Scholar 

  10. Bleicher F, Wiesinger G, Kumpf C, Finkeldei D, Baumann C, Lechner C (2018) Vibration assisted drilling of CFRP/metal stacks at low frequencies and high amplitudes. Prod Eng 12:289–296. https://doi.org/10.1007/s11740-018-0818-z

    Article  Google Scholar 

  11. Pecat O, Brinksmeier E (2014) Tool wear analyses in low frequency vibration assisted drilling of CFRP/Ti6Al4V stack material. In: Procedia CIRP. Elsevier, Amsterdam, pp 142–147

    Google Scholar 

  12. Zitoune R, Krishnaraj V, Sofiane Almabouacif B, Collombet F, Sima M, Jolin A (2012) Influence of machining parameters and new nano-coated tool on drilling performance of CFRP/Aluminium sandwich. Compos Part B Eng 43:1480–1488. https://doi.org/10.1016/j.compositesb.2011.08.054

    Article  Google Scholar 

  13. Ma Y, Bridges D, Yu Y, Han J, Li H, Hu A (2019) Joining of Carbon Fiber Reinforced Plastic to Aluminum Alloy by Reactive Multilayer Films and Low Power Semiconductor Laser Heating. Appl Sci 9:319. https://doi.org/10.3390/app9020319

    Article  Google Scholar 

  14. James S (2017) Experimental study on micromachining of CFRP_Ti stacks using micro ultrasonic machining process. SpringerLink, Berlin, pp 1539–1547

    Google Scholar 

  15. Ning FD, Cong WL, Pei ZJ, Treadwell C (2015) Rotary ultrasonic machining of CFRP: A comparison with grinding. Ultrasonics 66:125–132. https://doi.org/10.1016/j.ultras.2015.11.002

    Article  Google Scholar 

  16. Bertsche E, Ehmann K, Malukhin K (2013) An analytical model of rotary ultrasonic milling. Int J Adv Manuf Technol 65:1705–1720. https://doi.org/10.1007/s00170-012-4292-z

    Article  Google Scholar 

  17. Yang Z, Zhu L, Zhang G, Ni C, Lin B (2020) Review of ultrasonic vibration-assisted machining in advanced materials. Int J Mach Tools Manuf 156:103594. https://doi.org/10.1016/j.ijmachtools.2020.103594

    Article  Google Scholar 

  18. Geng D, Liu Y, Shao Z, Lu Z, Cai J, Li X, Jiang X, Zhang D (2019) Delamination formation, evaluation and suppression during drilling of composite laminates: A review. Compos Struct 216:168–186. https://doi.org/10.1016/j.compstruct.2019.02.099

    Article  Google Scholar 

  19. Balaji R, Sivakumar S, Nadarajan M, Selokar A (2019) A recent investigations: Effect of surface grinding on CFRP using rotary ultrasonic machining. Mater Today Proc 18:5209–5218. https://doi.org/10.1016/j.matpr.2019.07.521

    Article  Google Scholar 

  20. Scopus - Sources

  21. Wang H, Ning F, Hu Y, Fernando PKSC, Pei ZJ, Cong W (2016) Surface grinding of carbon fiber-reinforced plastic composites using rotary ultrasonic machining: Effects of tool variables. Adv Mech Eng 8:1–14. https://doi.org/10.1177/1687814016670284

    Article  Google Scholar 

  22. Ning F, Wang H, Cong W, Fernando PKSC (2016) A mechanistic ultrasonic vibration amplitude model during rotary ultrasonic machining of CFRP composites. Ultrasonics 76:44–51. https://doi.org/10.1016/j.ultras.2016.12.012

    Article  Google Scholar 

  23. Liu S, Chen T, Wu C (2016) Rotary ultrasonic face grinding of carbon fiber reinforced plastic (CFRP): a study on cutting force model. Int J Adv Manuf Technol 89:847–856. https://doi.org/10.1007/s00170-016-9151-x

    Article  Google Scholar 

  24. Cong WL, Zou X, Deines TW, Wu N, Wang X, Pei ZJ (2012) Rotary ultrasonic machining of carbon fiber reinforced plastic composites: An experimental study on cutting temperature. J Reinf Plast Compos 31:1516–1525. https://doi.org/10.1177/0731684412464913

    Article  Google Scholar 

  25. Wang H, Cong W, Ning F, Hu Y (2017) A study on the effects of machining variables in surface grinding of CFRP composites using rotary ultrasonic machining. Int J Adv Manuf Technol 95:3651–3663. https://doi.org/10.1007/s00170-017-1468-6

    Article  Google Scholar 

  26. Wang H, Ning F, Hu Y, Cong W (2017) Surface grinding of CFRP composites using rotary ultrasonic machining: a comparison of workpiece machining orientations. Int J Adv Manuf Technol 95:2917–2930. https://doi.org/10.1007/s00170-017-1401-z

    Article  Google Scholar 

  27. Cong WL, Pei ZJ, Sun X, Zhang CL (2013) Rotary ultrasonic machining of cfrp: A mechanistic predictive model for cutting force. Ultrasonics 54:663–675. https://doi.org/10.1016/j.ultras.2013.09.005

    Article  Google Scholar 

  28. Cong WL, Pei ZJ, Feng Q, Deines TW, Treadwell C (2012) Rotary ultrasonic machining of CFRP: A comparison with twist drilling. J Reinf Plast Compos 31:313–321. https://doi.org/10.1177/0731684411427419

    Article  Google Scholar 

  29. Feng Q, Cong WL, Pei ZJ, Ren CZ (2012) Rotary ultrasonic machining of carbon fiber-reinforced polymer: Feasibility study. Mach Sci Technol 16:380–398. https://doi.org/10.1080/10910344.2012.698962

    Article  Google Scholar 

  30. Cong WL, Feng Q, Pei ZJ, Deines TW, Treadwell C (2012) Rotary ultrasonic machining of carbon fiber-reinforced plastic composites: Using cutting fluid vs. cold air as coolant. J Compos Mater 46:1745–1753. https://doi.org/10.1177/0021998311424625

    Article  Google Scholar 

  31. Zhang C, Cong W, Feng P, Pei Z (2014) Rotary ultrasonic machining of optical K9 glass using compressed air as coolant: A feasibility study. Proc Inst Mech Eng Part B J Eng Manuf 228:504–514. https://doi.org/10.1177/0954405413506195

    Article  Google Scholar 

  32. Cong WL, Pei ZJ, Treadwell C (2014) Preliminary study on rotary ultrasonic machining of CFRP/Ti stacks. Ultrasonics 54:1594–1602. https://doi.org/10.1016/j.ultras.2014.03.012

    Article  Google Scholar 

  33. Cong WL, Pei ZJ, Deines TW, Srivastava A, Riley L, Treadwell C (2012) Rotary ultrasonic machining of CFRP composites: A study on power consumption. Ultrasonics 52:1030–1037. https://doi.org/10.1016/j.ultras.2012.08.007

    Article  Google Scholar 

  34. Thirumalai Kumaran S, Ko TJ, Li C, Yu Z, Uthayakumar M (2017) Rotary ultrasonic machining of woven CFRP composite in a cryogenic environment. J Alloys Compd 698:984–993. https://doi.org/10.1016/j.jallcom.2016.12.275

    Article  Google Scholar 

  35. Singh RP, Singhal S (2016) Rotary Ultrasonic Machining: A Review. Mater Manuf Process 31:1795–1824. https://doi.org/10.1080/10426914.2016.1140188

    Article  Google Scholar 

  36. Jain NK, Jain VK (2001) Modeling of material removal in mechanical type advanced machining processes: A state-of-art review. Int J Mach Tools Manuf 41:1573–1635. https://doi.org/10.1016/S0890-6955(01)00010-4

    Article  Google Scholar 

  37. Hintze Wolfgang W, Hartmann D, Schütte C (2011) Occurrence and propagation of delamination during the machining of carbon fibre reinforced plastics (CFRPs) - An experimental study. Compos Sci Technol 71:1719–1726. https://doi.org/10.1016/j.compscitech.2011.08.002

    Article  Google Scholar 

  38. Uhlmann E, Sammler F, Richarz S, Heitmüller F, Bilz M (2014) Machining of Carbon Fibre Reinforced Plastics. Procedia CIRP 24:19–24. https://doi.org/10.1016/j.procir.2014.07.135

    Article  Google Scholar 

  39. Krishnamoorthy A, Rajendra Boopathy S, Palanikumar K, Paulo Davim J (2012) Application of grey fuzzy logic for the optimization of drilling parameters for CFRP composites with multiple performance characteristics. Meas J Int Meas Confed 45:1286–1296. https://doi.org/10.1016/j.measurement.2012.01.008

    Article  Google Scholar 

  40. Kataria R, Kumar J, Pabla BS (2016) Experimental Investigation and Optimization of Machining Characteristics in Ultrasonic Machining of WC-Co Composite Using GRA Method. Mater Manuf Process 31:685–693. https://doi.org/10.1080/10426914.2015.1037910

    Article  Google Scholar 

  41. Xu W, Zhang L (2016) Mechanics of fibre deformation and fracture in vibration-assisted cutting of unidirectional fibre-reinforced polymer composites. Int J Mach Tools Manuf 103:40–52. https://doi.org/10.1016/j.ijmachtools.2016.01.002

    Article  Google Scholar 

  42. Lotfi M, Amini S (2017) Experimental and numerical study of ultrasonically-assisted drilling. Ultrasonics 75:185–193. https://doi.org/10.1016/j.ultras.2016.11.009

    Article  Google Scholar 

  43. Fernando P, Zhang M, Pei Z (2018) Rotary Ultrasonic Machining of CFRP: Effects of Abrasive Properties. V004T03A060. https://doi.org/10.1115/msec2018-6631

  44. Thoe TB, Aspinwall DK, Wise MLH (1998) Review on ultrasonic machining. Int J Mach Tools Manuf 38:239–255. https://doi.org/10.1016/S0890-6955(97)00036-9

    Article  Google Scholar 

  45. Kumar J (2013) Ultrasonic Machining—A Comprehensive Review

  46. Kataria R, Kumar J (1975) Ultrasonic Machining: A Review. Adv Mater Res 1137:61–78. https://doi.org/10.4028/www.scientific.net/amr.1137.61

    Article  Google Scholar 

  47. Miller GE (1957) Special theory of ultrasonic machining. J Appl Phys 28:149–156. https://doi.org/10.1063/1.1722698

    Article  Google Scholar 

  48. Pei ZJ, Ferreira PM, Haselkorn M (1995) Plastic flow in rotary ultrasonic machining of ceramics. J Mater Process Tech 48:771–777. https://doi.org/10.1016/0924-0136(94)01720-L

    Article  Google Scholar 

  49. Wang J, Shimada K, Mizutani M, Kuriyagawa T (2018) Effects of abrasive material and particle shape on machining performance in micro ultrasonic machining. Precis Eng 51:373–387. https://doi.org/10.1016/j.precisioneng.2017.09.008

    Article  Google Scholar 

  50. Hu P, Zhang JM, Pei ZJ, Clyde T (2002) Modeling of material removal rate in rotary ultrasonic machining: Designed experiments. J Mater Process Technol 129:339–344. https://doi.org/10.1016/S0924-0136(02)00686-6

    Article  Google Scholar 

  51. Thoe TB, Aspinwall DK, Killey N (1999) Combined ultrasonic and electrical discharge machining of ceramic coated nickel alloy. J Mater Process Technol 92–93:323–328. https://doi.org/10.1016/S0924-0136(99)00117-X

    Article  Google Scholar 

  52. Zhao W, Wang Z, Di S et al (2002) Ultrasonic and electric discharge machining to deep and small hole on titanium alloy. J Mater Process Technol 120:101–106. https://doi.org/10.1016/S0924-0136(01)01149-9

    Article  Google Scholar 

  53. Cherng Lin Y, Hwa Yan B, Yuan Huang F (2001) Surface modification of Al-Zn-Mg aluminum alloy using the combined process of EDM with USM. J Mater Process Technol 115:359–366. https://doi.org/10.1016/S0924-0136(01)01017-2

    Article  Google Scholar 

  54. Babitsky VI, Mitrofanov AV, Silberschmidt VV (2004) Ultrasonically assisted turning of aviation materials: Simulations and experimental study. Ultrasonics 42:81–86. https://doi.org/10.1016/j.ultras.2004.02.001

    Article  Google Scholar 

  55. Chang SSF, Bone GM (2005) Burr size reduction in drilling by ultrasonic assistance. Robot Comput Integr Manuf 21:442–450. https://doi.org/10.1016/j.rcim.2004.11.005

    Article  Google Scholar 

  56. Cong WL, Feng Q, Pei ZJ et al (2011) Dry Machining of Carbon Fiber Reinforced Plastic Composite by Rotary Ultrasonic Machining: Effects of Machining Variables, pp 363–371. https://doi.org/10.1115/msec2011-50116

    Book  Google Scholar 

  57. Phadnis VA, Makhdum F, Roy A, Silberschmidt VV (2012) Experimental and numerical investigations in conventional and ultrasonically assisted drilling of CFRP laminate. Procedia CIRP 1:455–459. https://doi.org/10.1016/j.procir.2012.04.081

    Article  Google Scholar 

  58. Geng D, Zhang D, Xu Y, Jiang X, Lu Z, Lu D (2015) Effect of speed ratio in edge routing of carbon fiber-reinforced plastics by rotary ultrasonic elliptical machining. J Reinf Plast Compos 34:1779–1790. https://doi.org/10.1177/0731684415597483

    Article  Google Scholar 

  59. Fernando PKSC, Pei Z, Zhang M, Song X (2016) Rotary ultrasonic drilling of CFRP: Effect of process parameters on delamination. ASME 2016 11th Int Manuf Sci Eng Conf MSEC 2016 1:5–10. https://doi.org/10.1115/MSEC20168611

    Article  Google Scholar 

  60. Ning F, Wang H, Hu Y, Cong W, Zhang M, Li Y (2017) Rotary Ultrasonic Surface Machining of CFRP Composites: A Comparison with Conventional Surface Grinding. Procedia Manuf 10:557–567. https://doi.org/10.1016/j.promfg.2017.07.049

    Article  Google Scholar 

  61. Fernando PKSC, Zhang MP, Pei Z, Cong W (2017) Rotary ultrasonic machining: Effects of tool end angle on delamination of CFRP drilling. ASME 2017 12th Int Manuf Sci Eng Conf MSEC 2017 collocated with JSME/ASME 2017 6th Int Conf Mater Process 1:1–6. https://doi.org/10.1115/MSEC20172863

  62. Sonate A, Vepuri D, James S (2017) Study of micro ultrasonic machining of CFRP/Ti stacks. ASME Int Mech Eng Congr Expo Proc 2:1–6. https://doi.org/10.1115/IMECE2017-72317

    Article  Google Scholar 

  63. James S, Sonate A (2017) Experimental study on micromachining of CFRP/Ti stacks using micro ultrasonic machining process, pp 1539–1547

    Google Scholar 

  64. Wang H, Ning F, Hu Y, du D, Cong W (2017) Surface grinding of CFRP composites using rotary ultrasonic machining: Design of experiment on cutting force, torque and surface roughness. Int J Manuf Res 12:461–479. https://doi.org/10.1504/IJMR.2017.088404

    Article  Google Scholar 

  65. Ning F, Cong W, Wang H, Hu Y, Hu Z, Pei Z (2017) Surface grinding of CFRP composites with rotary ultrasonic machining: a mechanistic model on cutting force in the feed direction. Int J Adv Manuf Technol 92:1217–1229. https://doi.org/10.1007/s00170-017-0149-9

    Article  Google Scholar 

  66. Wang H, Ning F, Hu Y, et al (2018) Edge Trimming of CFRP Composites Using Rotary Ultrasonic Machining: Effects of Ultrasonic Vibration. V004T03A051. https://doi.org/10.1115/msec2018-6362

  67. Li Y, Ren C, Wang H, Hu Y, Ning F, Wang X, Cong W (2018) Edge surface grinding of CFRP composites using rotary ultrasonic machining: comparison of two machining methods. Int J Adv Manuf Technol 100:3237–3248. https://doi.org/10.1007/s00170-018-2901-1

    Article  Google Scholar 

  68. Chen X, Wang H, Hu Y et al (2019) Rotary ultrasonic machining of cfrp composites: Effects of machining variables on workpiece delamination. In: ASME 2019 14th International Manufacturing Science and Engineering Conference, MSEC 2019. American Society of Mechanical Engineers (ASME), New York

    Google Scholar 

  69. James S, Panchal S (2019) Parametric study of micro ultrasonic machining process of hybrid composite stacks using finite element analysis. Procedia Manuf 34:408–417. https://doi.org/10.1016/j.promfg.2019.06.185

    Article  Google Scholar 

  70. James S, Panchal S (2019) Finite element analysis and simulation study on micromachining of hybrid composite stacks using Micro Ultrasonic Machining process. J Manuf Process 48:283–296. https://doi.org/10.1016/j.jmapro.2019.10.028

    Article  Google Scholar 

  71. Wang H, Ning F, Li Y, Hu Y, Cong W (2019) Scratching-induced surface characteristics and material removal mechanisms in rotary ultrasonic surface machining of CFRP. Ultrasonics 97:19–28. https://doi.org/10.1016/j.ultras.2019.04.004

    Article  Google Scholar 

  72. Zhang D, Wang H, Hu Y et al (2019) Rotary ultrasonic machining of cfrp composites: Effects of carbon fiber reinforcement structure. ASME 2019 14th Int Manuf Sci Eng Conf MSEC 2019 2:1–9. https://doi.org/10.1115/MSEC2019-3014

    Article  Google Scholar 

  73. Wang H, Hu Y, Cong W, Hu Z (2019) A Mechanistic Model on Feeding-Directional Cutting Force in Surface Grinding of CFRP Composites using Rotary Ultrasonic Machining with Horizontal Ultrasonic Vibration. Int J Mech Sci 155:450–460. https://doi.org/10.1016/j.ijmecsci.2019.03.009

    Article  Google Scholar 

  74. Ning F, Wang H, Cong W (2019) Rotary ultrasonic machining of carbon fiber reinforced plastic composites: a study on fiber material removal mechanism through single-grain scratching. Int J Adv Manuf Technol 103:1095–1104. https://doi.org/10.1007/s00170-019-03433-7

    Article  Google Scholar 

  75. Shi H, Yuan S, Li Z, Song H, Qian J (2019) Evaluation of surface roughness based on sampling array for rotary ultrasonic machining of carbon fiber reinforced polymer composites. Meas J Int Meas Confed 138:175–181. https://doi.org/10.1016/j.measurement.2019.02.002

    Article  Google Scholar 

  76. Slimane A, Slimane S, Kebdani S, Chaib M, Dahmane S, Bouchouicha B, Sardi N, Adjim S (2018) Parameters effects analysis of rotary ultrasonic machining on carbon fiber reinforced plastic (CFRP) composite using an interactive RSM Method. Int J Interact Des Manuf. 13:521–529. https://doi.org/10.1007/s12008-018-0518-0

    Article  Google Scholar 

  77. Wang H, Hu Y, Cong W, Burks AR (2019) Rotary ultrasonic machining of carbon fiber–reinforced plastic composites: effects of ultrasonic frequency. Int J Adv Manuf Technol 104:3759–3772. https://doi.org/10.1007/s00170-019-04084-4

    Article  Google Scholar 

  78. Shi H, Yuan S, Zhang C, Chen B, Li Q, Li Z, Zhu G, Qian J (2020) A cutting force prediction model for rotary ultrasonic side grinding of CFRP composites considering coexistence of brittleness and ductility. Int J Adv Manuf Technol 106:2403–2414. https://doi.org/10.1007/s00170-019-04730-x

    Article  Google Scholar 

  79. Wang H, Pei ZJ, Cong W (2020) A feeding-directional cutting force model for end surface grinding of CFRP composites using rotary ultrasonic machining with elliptical ultrasonic vibration. Int J Mach Tools Manuf 152:103540. https://doi.org/10.1016/j.ijmachtools.2020.103540

    Article  Google Scholar 

  80. Wang H, Pei ZJ, Cong W (2020) A mechanistic cutting force model based on ductile and brittle fracture material removal modes for edge surface grinding of CFRP composites using rotary ultrasonic machining. Int J Mech Sci 176:105551. https://doi.org/10.1016/j.ijmecsci.2020.105551

    Article  Google Scholar 

  81. Shao Z, Jiang X, Li Z, Geng D, Li S, Zhang D (2019) Feasibility study on ultrasonic-assisted drilling of CFRP/Ti stacks by single-shot under dry condition. Int J Adv Manuf Technol 105:1259–1273. https://doi.org/10.1007/s00170-019-04329-2

    Article  Google Scholar 

  82. Wang H, Hu Y, Cong W, Hu Z, Wang Y (2020) A novel investigation on horizontal and 3D elliptical ultrasonic vibrations in rotary ultrasonic surface machining of carbon fiber reinforced plastic composites. J Manuf Process 52:12–25. https://doi.org/10.1016/j.jmapro.2020.01.027

    Article  Google Scholar 

  83. Zhang D, Wang H, Burks AR, Cong W (2020) Delamination in rotary ultrasonic machining of CFRP composites: finite element analysis and experimental implementation. Int J Adv Manuf Technol 107:3847–3858. https://doi.org/10.1007/s00170-020-05310-0

    Article  Google Scholar 

  84. Wang H, Zhang D, Li Y, Cong W (2020) The effects of elliptical ultrasonic vibration in surface machining of CFRP composites using rotary ultrasonic machining. Int J Adv Manuf Technol 106:5527–5538. https://doi.org/10.1007/s00170-020-04976-w

    Article  Google Scholar 

  85. Singh RP, Singhal S (2015) Rotary ultrasonic machining of advanced materials: a review. Int J Technol Res Eng 2:777–785. https://doi.org/10.1080/10426914.2016.1140188

    Article  Google Scholar 

  86. Sonate A, Vepuri D, James S (2019) IMECE2017-72317. 1–6

  87. Helmy MO, El-Hofy MH, El-Hofy H (2018) Effect of Cutting Fluid Delivery Method on Ultrasonic Assisted Edge Trimming of Multidirectional CFRP Composites at Different Machining Conditions. Procedia CIRP 68:450–455. https://doi.org/10.1016/j.procir.2017.12.077

    Article  Google Scholar 

  88. Huda AHNF, Ascroft H, Barnes S (2016) Machinability Study of Ultrasonic Assisted Machining (UAM) of Carbon Fibre Reinforced Plastic (CFRP) with Multifaceted Tool. Procedia CIRP 46:488–491. https://doi.org/10.1016/j.procir.2016.04.041

    Article  Google Scholar 

  89. Halim NFHA, Ascroft H, Barnes S (2017) Analysis of Tool Wear, Cutting Force, Surface Roughness and Machining Temperature during Finishing Operation of Ultrasonic Assisted Milling (UAM) of Carbon Fibre Reinforced Plastic (CFRP). Procedia Eng 184:185–191. https://doi.org/10.1016/j.proeng.2017.04.084

    Article  Google Scholar 

  90. Sanda A, Arriola I, Garcia Navas V, Bengoetxea I, Gonzalo O (2016) Ultrasonically assisted drilling of carbon fibre reinforced plastics and Ti6Al4V. J Manuf Process 22:169–176. https://doi.org/10.1016/j.jmapro.2016.03.003

    Article  Google Scholar 

  91. Onawumi PY, Roy A, Silberschmidt VV, Merson E (2018) Ultrasonically assisted drilling of aerospace CFRP/Ti stacks. Procedia CIRP 77:383–386. https://doi.org/10.1016/j.procir.2018.09.041

    Article  Google Scholar 

  92. Geng D, Zhang D, Li Z, Liu D (2017) Feasibility study of ultrasonic elliptical vibration-assisted reaming of carbon fiber reinforced plastics/titanium alloy stacks. Ultrasonics 75:80–90. https://doi.org/10.1016/j.ultras.2016.11.011

    Article  Google Scholar 

  93. Kurniawan R, Thirumalai Kumaran S, Arumuga Prabu V, Zhen Y, Park KM, Kwak YI, Mofizul Islam M, Ko TJ (2017) Measurement of burr removal rate and analysis of machining parameters in ultrasonic assisted dry EDM (US-EDM) for deburring drilled holes in CFRP composite. Meas J Int Meas Confed 110:98–115. https://doi.org/10.1016/j.measurement.2017.06.008

    Article  Google Scholar 

  94. Kumaran ST, Ko TJ, Kurniawan R (2018) Grey fuzzy optimization of ultrasonic-assisted EDM process parameters for deburring CFRP composites. Meas J Int Meas Confed 123:203–212. https://doi.org/10.1016/j.measurement.2018.03.076

    Article  Google Scholar 

  95. Cong WL, Pei ZJ, Deines TW, Liu DF, Treadwell C (2013) Rotary ultrasonic machining of CFRP/Ti stacks using variable feedrate. Compos Part B Eng 52:303–310. https://doi.org/10.1016/j.compositesb.2013.04.022

    Article  Google Scholar 

  96. Baraheni M, Amini S (2019) Comprehensive optimization of process parameters in rotary ultrasonic drilling of CFRP aimed at minimizing delamination. Int J Light Mater Manuf. 2:379–387. https://doi.org/10.1016/j.ijlmm.2019.03.003

    Article  Google Scholar 

  97. Yuan S, Zhu G, Zhang C (2017) Modeling of tool blockage condition in cutting tool design for rotary ultrasonic machining of composites. Int J Adv Manuf Technol 91:2645–2654. https://doi.org/10.1007/s00170-016-9911-7

    Article  Google Scholar 

  98. Geng D, Lu Z, Yao G, Liu J, Li Z, Zhang D (2017) Cutting temperature and resulting influence on machining performance in rotary ultrasonic elliptical machining of thick CFRP. Int J Mach Tools Manuf 123:160–170. https://doi.org/10.1016/j.ijmachtools.2017.08.008

    Article  Google Scholar 

  99. Geng D, Liu Y, Shao Z, Zhang M, Jiang X, Zhang D (2020) Delamination formation and suppression during rotary ultrasonic elliptical machining of CFRP. Compos Part B Eng 183:107698. https://doi.org/10.1016/j.compositesb.2019.107698

    Article  Google Scholar 

  100. Geng D, Zhang D, Xu Y, He F, Liu D, Duan Z (2015) Rotary ultrasonic elliptical machining for side milling of CFRP: Tool performance and surface integrity. Ultrasonics 59:128–137. https://doi.org/10.1016/j.ultras.2015.02.006

    Article  Google Scholar 

  101. Geng D, Zhang D, Xu Y, He F, Liu F (2014) Comparison of drill wear mechanism between rotary ultrasonic elliptical machining and conventional drilling of CFRP. J Reinf Plast Compos 33:797–809. https://doi.org/10.1177/0731684413518619

    Article  Google Scholar 

  102. Liu J, Zhang D, Qin L, Yan L (2011) Feasibility study of the rotary ultrasonic elliptical machining of carbon fiber reinforced plastics (CFRP). Int J Mach Tools Manuf 53:141–150. https://doi.org/10.1016/j.ijmachtools.2011.10.007

    Article  Google Scholar 

  103. Ertunc HM, Oysu C (2004) Drill wear monitoring using cutting force signals. Mechatronics 14:533–548. https://doi.org/10.1016/j.mechatronics.2003.10.005

    Article  Google Scholar 

  104. Li ZC, Jiao Y, Deines TW, Pei ZJ, Treadwell C (2005) Rotary ultrasonic machining of ceramic matrix composites: Feasibility study and designed experiments. Int J Mach Tools Manuf 45:1402–1411. https://doi.org/10.1016/j.ijmachtools.2005.01.034

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the research, writing, and reviewing of the paper.

Corresponding authors

Correspondence to Mohammed Asmael or Babak Safaei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors have agreed to authorship, read, and approved the manuscript, and given consent for submission and subsequent publication of the manuscript. The authors guarantee that the contribution to the work has not been previously published elsewhere.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asmael, M., Safaei, B., Zeeshan, Q. et al. Ultrasonic machining of carbon fiber–reinforced plastic composites: a review. Int J Adv Manuf Technol 113, 3079–3120 (2021). https://doi.org/10.1007/s00170-021-06722-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-06722-2

Keywords

Navigation