Skip to main content
Log in

Eco-friendly manufacturing towards the industry of the future with a focus on less cutting fluid and high workpiece quality applied to the grinding process

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The global effort in order to reduce impacts to the environment and people produces the need for new technologies as an eco-friendly alternative to replace the cutting fluids, which directly affects the grinding process. In this sense, grinding uses a large amount of cutting fluid to mitigate high temperatures and their consequences. Thus, alternatives to the cutting fluid should reduce the use of fluid combined with the maintenance of production, like minimum quantity lubricant (MQL). The MQL with pure oil tends to produce results close to the cutting fluid method, but improvements in its cooling capacity are still mainly needed. Therefore, this work studies the MQL with oil-water dilution (1:1, 1:3, and 1:5) varying the feed rate in the external cylindrical grinding of AISI 4340 steel, comparing it with pure MQL and the conventional method with abundant cutting fluid. The results of applying MQL 1:5 produced workpieces with similar quality to that obtained with the conventional cutting fluid. In addition, the MQL method resulted in less variation with the increase of feed rate when compared to other lubri-refrigerant methods applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Brinksmeier E, Meyer D, Huesmann-Cordes AG, Herrmann C (2015) Metalworking fluids - mechanisms and performance. CIRP Ann Manuf Technol 64:605–628. https://doi.org/10.1016/j.cirp.2015.05.003

    Article  Google Scholar 

  2. Debnath S, Reddy MM, Yi QS (2014) Environmental friendly cutting fl uids and cooling techniques in machining : a review. J Clean Prod 83:33–47. https://doi.org/10.1016/j.jclepro.2014.07.071

    Article  Google Scholar 

  3. Manimaran G, Pradeep kumar M, Venkatasamy R (2014) Influence of cryogenic cooling on surface grinding of stainless steel 316. Cryogenics (Guildf) 59:76–83. https://doi.org/10.1016/j.cryogenics.2013.11.005

    Article  Google Scholar 

  4. Nizamuddin M, Agrawal SM, Patil N (2018) The effect of Karanja based soluble cutting fluid on chips formation in orthogonal cutting process of AISI 1045 steel. Procedia Manuf 20:12–17. https://doi.org/10.1016/J.PROMFG.2018.02.002

    Article  Google Scholar 

  5. Moretti GB, de Moraes DL, Garcia MV, Lopes JC, Ribeiro FSF, Foschini CR, de Mello HJ, Sanchez LEDA, Aguiar PR, Bianchi EC (2020) Grinding behavior of austempered ductile iron: a study about the effect of pure and diluted MQL technique applying different friability wheels. Int J Adv Manuf Technol 108:3661–3673. https://doi.org/10.1007/s00170-020-05577-3

    Article  Google Scholar 

  6. Ribeiro FSF, Lopes JC, Garcia MV, de Moraes DL, da Silva AE, de Angelo Sanchez LE, de Aguiar PR, Bianchi EC (2020) New knowledge about grinding using MQL simultaneous to cooled air and MQL combined to wheel cleaning jet technique. Int J Adv Manuf Technol 109:905–917. https://doi.org/10.1007/s00170-020-05721-z

    Article  Google Scholar 

  7. Javaroni RL, Lopes JC, Sato BK, Sanchez LEA, Mello HJ, Aguiar PR, Bianchi EC (2019) Minimum quantity of lubrication (MQL) as an eco-friendly alternative to the cutting fluids in advanced ceramics grinding. Int J Adv Manuf Technol 103:2809–2819. https://doi.org/10.1007/s00170-019-03697-z

    Article  Google Scholar 

  8. Said Z, Gupta M, Hegab H, Arora N, Khan AM, Jamil M, Bellos E (2019) A comprehensive review on minimum quantity lubrication (MQL) in machining processes using nano-cutting fluids. Int J Adv Manuf Technol 105:2057–2086. https://doi.org/10.1007/s00170-019-04382-x

    Article  Google Scholar 

  9. Demirbas E, Kobya M (2017) Operating cost and treatment of metalworking fluid wastewater by chemical coagulation and electrocoagulation processes. Process Saf Environ Prot 105:79–90. https://doi.org/10.1016/j.psep.2016.10.013

    Article  Google Scholar 

  10. Talon AG, Lopes JC, Tavares AB, et al (2019) Effect of hardened steel grinding using aluminum oxide wheel under application of cutting fluid with corrosion inhibitors

  11. Jabbar MA, Hashim Z, Zainuddin H et al (2017) Respiratory health effects of metalworking fluid among metal machining workers : review article. Asia Pac Environ Occup Health J 3:15–19

    Google Scholar 

  12. Mao C, Zou H, Huang X, Zhang J, Zhou Z (2013) The influence of spraying parameters on grinding performance for nanofluid minimum quantity lubrication. Int J Adv Manuf Technol 64:1791–1799. https://doi.org/10.1007/s00170-012-4143-y

    Article  Google Scholar 

  13. Debnath S, Reddy MM, Yi QS (2014) Environmental friendly cutting fluids and cooling techniques in machining: a review. J Clean Prod 83:33–47

    Article  Google Scholar 

  14. Picciotto S, Ljungman PL, Eisen EA (2016) Straight metalworking fluids and all-cause and cardiovascular mortality analyzed by using G-estimation of an accelerated failure time model with quantitative exposure: methods and interpretations. Am J Epidemiol 183:680–688

    Article  Google Scholar 

  15. Lopes JC, de Martini FL, Garcia MV et al (2020) Performance of austempered ductile iron (ADI) grinding using diluted oil in MQL combined with wheel cleaning jet and different CBN grains friability. Int J Adv Manuf Technol 107:1805–1818. https://doi.org/10.1007/s00170-020-05142-y

    Article  Google Scholar 

  16. Katna R, Singh K, Agrawal N, Jain S (2017) Green manufacturing—performance of a biodegradable cutting fluid. Mater Manuf Process 32:1522–1527. https://doi.org/10.1080/10426914.2017.1328119

    Article  Google Scholar 

  17. Lawal SA, Choudhury IA, Nukman Y (2013) A critical assessment of lubrication techniques in machining processes: a case for minimum quantity lubrication using vegetable oil-based lubricant. J Clean Prod 41:210–221

    Article  Google Scholar 

  18. Daniel DM, Ávila BN, Garcia MV, Lopes JC, Ribeiro FSF, de Mello HJ, de Angelo Sanchez LE, Aguiar PR, Bianchi EC (2020) Grinding comparative between ductile iron and austempered ductile iron under CBN wheel combined to abrasive grains with high and low friability. Int J Adv Manuf Technol 109:2679–2690. https://doi.org/10.1007/s00170-020-05787-9

    Article  Google Scholar 

  19. Matthew S (2009) Metal working fluids: finding green in the manufacturing process. Ind Lubr Tribol 61:60–66. https://doi.org/10.1108/00368790910940374

    Article  Google Scholar 

  20. Benedicto E, Carou D, Rubio EM (2017) Technical, economic and environmental review of the lubrication/cooling systems used in machining processes. Procedia Eng 184:99–116

    Article  Google Scholar 

  21. Klocke F, Kuchle A (2011) In: Klocke F (ed) Cutting fluids BT - manufacturing processes 1: cutting. Springer Berlin Heidelberg, Berlin, pp 219–236

    Chapter  Google Scholar 

  22. Tebaldo V, di Confiengo GG, Faga MG (2017) Sustainability in machining: “eco-friendly” turning of Inconel 718. Surface characterisation and economic analysis. J Clean Prod 140:1567–1577. https://doi.org/10.1016/j.jclepro.2016.09.216

    Article  Google Scholar 

  23. Lopes JC, Ribeiro FSF, Javaroni RL, Garcia MV, Ventura CEH, Scalon VL, de Angelo Sanchez LE, de Mello HJ, Aguiar PR, Bianchi EC (2020) Mechanical and thermal effects of abrasive cut-off applied in low and medium carbon steels using aluminum oxide cutting disc. Int J Adv Manuf Technol 109:1319–1331. https://doi.org/10.1007/s00170-020-05753-5

    Article  Google Scholar 

  24. Javaroni RL, Lopes JC, Garcia MV, Ribeiro FSF, de Angelo Sanchez LE, de Mello HJ, Aguiar PR, Bianchi EC (2020) Grinding hardened steel using MQL associated with cleaning system and cBN wheel. Int J Adv Manuf Technol 107:2065–2080. https://doi.org/10.1007/s00170-020-05169-1

    Article  Google Scholar 

  25. da Silva AE, Lopes JC, Daniel DM et al (2020) Behavior of austempered ductile iron (ADI) grinding using different MQL dilutions and CBN wheels with low and high friability. Int J Adv Manuf Technol:1–15. https://doi.org/10.1007/s00170-020-05347-1

  26. Kuram E, Ozcelik B, Bayramoglu M, Demirbas E, Simsek BT (2013) Optimization of cutting fluids and cutting parameters during end milling by using D-optimal design of experiments. J Clean Prod 42:159–166. https://doi.org/10.1016/j.jclepro.2012.11.003

    Article  Google Scholar 

  27. Hadad M (2015) An experimental investigation of the effects of machining parameters on environmentally friendly grinding process. J Clean Prod 108:217–231. https://doi.org/10.1016/j.jclepro.2015.05.092

    Article  Google Scholar 

  28. Lopes JC, Garcia MV, Valentim M, Javaroni RL, Ribeiro FSF, de Angelo Sanchez LE, de Mello HJ, Aguiar PR, Bianchi EC (2019) Grinding performance using variants of the MQL technique: MQL with cooled air and MQL simultaneous to the wheel cleaning jet. Int J Adv Manuf Technol 105:4429–4442. https://doi.org/10.1007/s00170-019-04574-5

    Article  Google Scholar 

  29. Pusavec F, Kramar D, Krajnik P, Kopac J (2010) Transitioning to sustainable production – part II: evaluation of sustainable machining technologies. J Clean Prod 18:1211–1221. https://doi.org/10.1016/j.jclepro.2010.01.015

    Article  Google Scholar 

  30. Shokrani A, Dhokia V, Newman ST (2012) Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids. Int J Mach Tools Manuf 57:83–101. https://doi.org/10.1016/j.ijmachtools.2012.02.002

    Article  Google Scholar 

  31. Rodriguez RL, Lopes JC, Hildebrandt RA, Perez RRV, Diniz AE, de Ângelo Sanchez LE, Rodrigues AR, de Mello HJ, de Aguiar PR, Bianchi EC (2019) Evaluation of grinding process using simultaneously MQL technique and cleaning jet on grinding wheel surface. J Mater Process Technol 271:357–367. https://doi.org/10.1016/j.jmatprotec.2019.03.019

    Article  Google Scholar 

  32. Rodriguez RL, Lopes JC, Mancini SD, de Ângelo Sanchez LE, de Almeida Varasquim FMF, Volpato RS, de Mello HJ, de Aguiar PR, Bianchi EC (2019) Contribution for minimization the usage of cutting fluids in CFRP grinding. Int J Adv Manuf Technol 103:487–497. https://doi.org/10.1007/s00170-019-03529-0

    Article  Google Scholar 

  33. de Martini FL, Lopes JC, Volpato RS et al (2018) Comparative analysis of two CBN grinding wheels performance in nodular cast iron plunge grinding. Int J Adv Manuf Technol 98:237–249. https://doi.org/10.1007/s00170-018-2133-4

    Article  Google Scholar 

  34. Sato BK, Rodriguez RL, Talon AG, Lopes JC, Mello HJ, Aguiar PR, Bianchi EC (2019) Grinding performance of AISI D6 steel using CBN wheel vitrified and resinoid bonded. Int J Adv Manuf Technol 105:2167–2182. https://doi.org/10.1007/s00170-019-04407-5

    Article  Google Scholar 

  35. Lopes JC, Ventura CEH, de M. Fernandes L et al (2019) Application of a wheel cleaning system during grinding of alumina with minimum quantity lubrication. Int J Adv Manuf Technol 102:333–341. https://doi.org/10.1007/s00170-018-3174-4

    Article  Google Scholar 

  36. Rodriguez RL, Lopes JC, Garcia MV, Tarrento GE, Rodrigues AR, de Ângelo Sanchez LE, de Mello HJ, de Aguiar PR, Bianchi EC (2020) Grinding process applied to workpieces with different geometries interrupted using CBN wheel. Int J Adv Manuf Technol 107:1265–1275. https://doi.org/10.1007/s00170-020-05122-2

    Article  Google Scholar 

  37. de Martini FL, Lopes JC, Ribeiro FSF et al (2019) Thermal model for surface grinding application. Int J Adv Manuf Technol 104:2783–2793. https://doi.org/10.1007/s00170-019-04101-6

    Article  Google Scholar 

  38. Lopes JC, Fragoso KM, Garcia MV, Ribeiro FSF, Francelin AP, de Angelo Sanchez LE, Rodrigues AR, de Mello HJ, Aguiar PR, Bianchi EC (2019) Behavior of hardened steel grinding using MQL under cold air and MQL CBN wheel cleaning. Int J Adv Manuf Technol 105:4373–4387. https://doi.org/10.1007/s00170-019-04571-8

    Article  Google Scholar 

  39. Alexandre FA, Lopes WN, Lofrano Dotto FR, Ferreira FI, Aguiar PR, Bianchi EC, Lopes JC (2018) Tool condition monitoring of aluminum oxide grinding wheel using AE and fuzzy model. Int J Adv Manuf Technol 96:67–79. https://doi.org/10.1007/s00170-018-1582-0

    Article  Google Scholar 

  40. Alexandre FA, Lopes JC, de Martini FL et al (2020) Depth of dressing optimization in CBN wheels of different friabilities using acoustic emission (AE) technique. Int J Adv Manuf Technol 106:5225–5240. https://doi.org/10.1007/s00170-020-04994-8

    Article  Google Scholar 

  41. Garcia MV, Lopes JC, Diniz AE, Rodrigues AR, Volpato RS, Sanchez LEA, de Mello HJ, Aguiar PR, Bianchi EC (2020) Grinding performance of bearing steel using MQL under different dilutions and wheel cleaning for green manufacture. J Clean Prod 257:120376. https://doi.org/10.1016/j.jclepro.2020.120376

    Article  Google Scholar 

  42. Jawahir IS, Attia H, Biermann D, Duflou J, Klocke F, Meyer D, Newman ST, Pusavec F, Putz M, Rech J, Schulze V, Umbrello D (2016) Cryogenic manufacturing processes. CIRP Ann Manuf Technol 65:713–736. https://doi.org/10.1016/j.cirp.2016.06.007

    Article  Google Scholar 

  43. Wang Y, Li C, Zhang Y, Yang M, Zhang X, Zhang N, Dai J (2017) Experimental evaluation on tribological performance of the wheel/workpiece interface in minimum quantity lubrication grinding with different concentrations of Al2O3 nanofluids. J Clean Prod 142:3571–3583. https://doi.org/10.1016/j.jclepro.2016.10.110

    Article  Google Scholar 

  44. Bianchi EC, Rodriguez RL, Hildebrandt RA, Lopes JC, de Mello HJ, de Aguiar PR, da Silva RB, Jackson MJ (2019) Application of the auxiliary wheel cleaning jet in the plunge cylindrical grinding with minimum quantity lubrication technique under various flow rates. Proc Inst Mech Eng B J Eng Manuf 233:1144–1156. https://doi.org/10.1177/0954405418774599

    Article  Google Scholar 

  45. Bianchi EC, Rodriguez RL, Hildebrandt RA, Lopes JC, de Mello HJ, da Silva RB, de Aguiar PR (2018) Plunge cylindrical grinding with the minimum quantity lubrication coolant technique assisted with wheel cleaning system. Int J Adv Manuf Technol 95:2907–2916. https://doi.org/10.1007/s00170-017-1396-5

    Article  Google Scholar 

  46. Zhang J, Li C, Zhang Y, Yang M, Jia D, Liu G, Hou Y, Li R, Zhang N, Wu Q, Cao H (2018) Experimental assessment of an environmentally friendly grinding process using nanofluid minimum quantity lubrication with cryogenic air. J Clean Prod 193:236–248. https://doi.org/10.1016/j.jclepro.2018.05.009

    Article  Google Scholar 

  47. Tawakoli T, Hadad MJ, Sadeghi MH (2010) Influence of oil mist parameters on minimum quantity lubrication – MQL grinding process. Int J Mach Tools Manuf 50:521–531. https://doi.org/10.1016/J.IJMACHTOOLS.2010.03.005

    Article  Google Scholar 

  48. Hadad MJ, Tawakoli T, Sadeghi MH, Sadeghi B (2012) Temperature and energy partition in minimum quantity lubrication-MQL grinding process. Int J Mach Tools Manuf 54–55:10–17. https://doi.org/10.1016/j.ijmachtools.2011.11.010

    Article  Google Scholar 

  49. Lopes JC, Ventura CEH, Rodriguez RL, Talon AG, Volpato RS, Sato BK, de Mello HJ, de Aguiar PR, Bianchi EC (2018) Application of minimum quantity lubrication with addition of water in the grinding of alumina. Int J Adv Manuf Technol 97:1951–1959. https://doi.org/10.1007/s00170-018-2085-8

    Article  Google Scholar 

  50. Sato BK, Lopes JC, Diniz AE, Rodrigues AR, de Mello HJ, Sanchez LEA, Aguiar PR, Bianchi EC (2020) Toward sustainable grinding using minimum quantity lubrication technique with diluted oil and simultaneous wheel cleaning. Tribol Int 147:106276. https://doi.org/10.1016/j.triboint.2020.106276

    Article  Google Scholar 

  51. Lopes JC, Garcia MV, Volpato RS, de Mello HJ, Ribeiro FSF, de Angelo Sanchez LE, de Oliveira Rocha K, Neto LD, Aguiar PR, Bianchi EC (2020) Application of MQL technique using TiO2 nanoparticles compared to MQL simultaneous to the grinding wheel cleaning jet. Int J Adv Manuf Technol 106:2205–2218. https://doi.org/10.1007/s00170-019-04760-5

    Article  Google Scholar 

  52. de Moraes DL, Garcia MV, Lopes JC, Ribeiro FSF, de Angelo Sanchez LE, Foschini CR, de Mello HJ, Aguiar PR, Bianchi EC (2019) Performance of SAE 52100 steel grinding using MQL technique with pure and diluted oil. Int J Adv Manuf Technol 105:4211–4223. https://doi.org/10.1007/s00170-019-04582-5

    Article  Google Scholar 

  53. Rowe WB (2014) Principles of modern grinding technology, 2nd edn. Elsevier Science, Burlington, pp 1–437

    Book  Google Scholar 

  54. de Jesus Oliveira D, Guermandi LG, Bianchi EC et al (2012) Improving minimum quantity lubrication in CBN grinding using compressed air wheel cleaning. J Mater Process Technol 212:2559–2568. https://doi.org/10.1016/j.jmatprotec.2012.05.019

    Article  Google Scholar 

  55. Nie Z, Wang G, Wang L, Rong Y(K) (2019) A coupled thermomechanical modeling method for predicting grinding residual stress based on randomly distributed abrasive grains. J Manuf Sci Eng 141:141. https://doi.org/10.1115/1.4043799

    Article  Google Scholar 

  56. Sinha MK, Madarkar R, Ghosh S, Rao PV (2017) Application of eco-friendly nanofluids during grinding of Inconel 718 through small quantity lubrication. J Clean Prod 141:1359–1375. https://doi.org/10.1016/j.jclepro.2016.09.212

    Article  Google Scholar 

Download references

Acknowledgments

Sincerely thanks to Nikkon Ferramentas de Corte Ltd. for providing material and knowledge about abrasive tools.

Funding

Special thanks to FAPESP (São Paulo Research Foundation–Proc. #2018/22661-2) for financial support and CAPES (Coordination for the Improvement of Higher Level Education Personnel) and the National Council for Scientific and Technological Development (CNPq) for the financial support given.

Author information

Authors and Affiliations

Authors

Contributions

Bruno Kenta Sato: Writing original draft; writing review and editing; visualization; conceptualization; formal analysis; investigation; validation

José Claudio Lopes: Writing original draft; resources; conceptualization; methodology; project administration

Rafael Lemes Rodriguez: Writing original draft; writing review and editing; visualization; conceptualization; formal analysis; investigation; validation

Mateus Vinicius Garcia: Writing original draft; investigation; data curation; formal analysis

Fernando Sabino Fonteque Ribeiro: Conceptualization; methodology; validation; writing original draft

Paulo Roberto Aguiar: Software; supervision

Eduardo Carlos Bianchi: Funding acquisition; conceptualization; resources; supervision; project administration

Corresponding author

Correspondence to Bruno Kenta Sato.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical aproval

The authors declare that this manuscript was not submitted to more than one journal for simultaneous consideration. Also, the submitted work is original and not have been published elsewhere in any form or language.

Consent to participate and publish

The authors declare that they participated in this paper willingly and the authors declare to consent to the publication of this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, B.K., Lopes, J.C., Rodriguez, R.L. et al. Eco-friendly manufacturing towards the industry of the future with a focus on less cutting fluid and high workpiece quality applied to the grinding process. Int J Adv Manuf Technol 113, 1163–1172 (2021). https://doi.org/10.1007/s00170-021-06650-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-06650-1

Keywords

Navigation