Skip to main content
Log in

Effect of grinding with different CBN grains applied to austempered ductile iron linked to quality and industrial cost

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The grinding process consists of an essential stage of manufacture that is justified by the process’ ability to guarantee precise dimensions and provide an excellent surface finish. In the present study, two grinding wheels of cubic boron nitride (CBN) abrasive grains with different friability (GL and GS) were used to perform the cylindrical grinding of the austempered ductile iron (ADI). This work compared the individual performance of each wheel, with CBN GL being of low friability and CBN GS of high. During machining with three feed rates (0.5, 1.0, and 1.5 mm/min), the conventional lubri-refrigeration method was used. In the workpieces analyzed, the tests of surface roughness, roundness deviation, specific energy, G-ratio, acoustic emission, cost analysis, microhardness, confocal microscopy, and optical microscopy were applied. The tests showed that, in almost all the output parameters, the best results obtained were using the CBN GL wheel with less friability. However, in the analysis of acoustic emission and specific energy, the results presented that the GS wheel obtained the best results; as it is a more friable tool, the efforts applied during the grinding of the GS wheel are less. Also, the microstructure analyses showed that both wheels were able to carry out the process without causing changes in the workpieces’ mechanical properties. The cost analysis of the inputs showed that the increase in the feed rate produces the lowest cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lopes JC, Garcia MV, Volpato RS, de Mello HJ, Ribeiro FSF, de Angelo Sanchez LE, de Oliveira Rocha K, Neto LD, Aguiar PR, Bianchi EC (2020) Application of MQL technique using TiO2 nanoparticles compared to MQL simultaneous to the grinding wheel cleaning jet. Int J Adv Manuf Technol 106:2205–2218. https://doi.org/10.1007/s00170-019-04760-5

    Article  Google Scholar 

  2. Li CH, Li JY, Wang S, Zhang Q (2013) Modeling and numerical simulation of the grinding temperature field with nanoparticle jet of MQL. Adv Mech Eng 5:986984. https://doi.org/10.1155/2013/986984

    Article  Google Scholar 

  3. Bianchi EC, De Aguiar PR, Da Silva LR, Canarim RC (2013) Application of minimum quantity lubrication in grinding. Sustain Manuf 6914:111–172. https://doi.org/10.1002/9781118621653.ch4

    Article  Google Scholar 

  4. Li X, Li Y (2016) Chain-to-chain competition on product sustainability. J Clean Prod 112:2058–2065. https://doi.org/10.1016/j.jclepro.2014.09.027

    Article  Google Scholar 

  5. Hadad MJ, Tawakoli T, Sadeghi MH, Sadeghi B (2012) Temperature and energy partition in minimum quantity lubrication-MQL grinding process. Int J Mach Tools Manuf 54–55:10–17. https://doi.org/10.1016/J.IJMACHTOOLS.2011.11.010

    Article  Google Scholar 

  6. Alexandre FA, Lopes JC, de Martini FL et al (2020) Depth of dressing optimization in CBN wheels of different friabilities using acoustic emission (AE) technique. Int J Adv Manuf Technol 106:5225–5240. https://doi.org/10.1007/s00170-020-04994-8

    Article  Google Scholar 

  7. Bianchi EC, Rodriguez RL, Hildebrandt RA, Lopes JC, de Mello HJ, de Aguiar PR, da Silva RB, Jackson MJ (2019) Application of the auxiliary wheel cleaning jet in the plunge cylindrical grinding with Minimum Quantity Lubrication technique under various flow rates. Proc Inst Mech Eng Part B J Eng Manuf 233:1144–1156. https://doi.org/10.1177/0954405418774599

    Article  Google Scholar 

  8. Bianchi EC, Rodriguez RL, Hildebrandt RA, Lopes JC, de Mello HJ, da Silva RB, de Aguiar PR (2018) Plunge cylindrical grinding with the minimum quantity lubrication coolant technique assisted with wheel cleaning system. Int J Adv Manuf Technol 95:2907–2916. https://doi.org/10.1007/s00170-017-1396-5

    Article  Google Scholar 

  9. Ribeiro FSF, Lopes JC, Garcia MV, de Angelo Sanchez LE, de Mello HJ, de Aguiar PR, Bianchi EC (2020) Grinding assessment of workpieces with different interrupted geometries using aluminum oxide wheel with vitrified bond. Int J Adv Manuf Technol 108:931–941. https://doi.org/10.1007/s00170-020-05500-w

    Article  Google Scholar 

  10. Tawakoli T, Hadad MJ, Sadeghi MH (2010) Investigation on minimum quantity lubricant-MQL grinding of 100Cr6 hardened steel using different abrasive and coolant-lubricant types. Int J Mach Tools Manuf 50:698–708. https://doi.org/10.1016/j.ijmachtools.2010.04.009

    Article  Google Scholar 

  11. Alexandre FA, Lopes WN, Lofrano Dotto FR, Ferreira FI, Aguiar PR, Bianchi EC, Lopes JC (2018) Tool condition monitoring of aluminum oxide grinding wheel using AE and fuzzy model. Int J Adv Manuf Technol 96:67–79. https://doi.org/10.1007/s00170-018-1582-0

    Article  Google Scholar 

  12. da Silva AE, Lopes JC, Daniel DM, de Moraes DL, Garcia MV, Ribeiro FSF, de Mello HJ, Sanchez LEDA, Aguiar PR, Bianchi EC (2020) Behavior of austempered ductile iron (ADI) grinding using different MQL dilutions and CBN wheels with low and high friability. Int J Adv Manuf Technol 107:4373–4387. https://doi.org/10.1007/s00170-020-05347-1

    Article  Google Scholar 

  13. de Mello HJ, de Mello DR, Rodriguez RL, Lopes JC, da Silva RB, de Angelo Sanchez LE, Hildebrandt RA, Aguiar PR, Bianchi EC (2018) Contribution to cylindrical grinding of interrupted surfaces of hardened steel with medium grit wheel. Int J Adv Manuf Technol 95:4049–4057. https://doi.org/10.1007/s00170-017-1552-y

    Article  Google Scholar 

  14. Ding W, Zhu Y, Zhang L, Xu J, Fu Y, Liu W, Yang C (2015) Stress characteristics and fracture wear of brazed CBN grains in monolayer grinding wheels. Wear 332–333:800–809. https://doi.org/10.1016/j.wear.2014.12.008

    Article  Google Scholar 

  15. Sato BK, de Sales AR, Lopes JC et al (2018) Influence of water in the MQL technique in the grinding of steel AISI 4340 using CBN wheels. Rev Esc Minas 71:391–396. https://doi.org/10.1590/0370-44672017710152

    Article  Google Scholar 

  16. de Martini FL, Lopes JC, Ribeiro FSF et al (2019) Thermal model for surface grinding application. Int J Adv Manuf Technol 104:2783–2793. https://doi.org/10.1007/s00170-019-04101-6

    Article  Google Scholar 

  17. Dai C, Ding W, Xu J, Fu Y, Yu T (2017) Influence of grain wear on material removal behavior during grinding nickel-based superalloy with a single diamond grain. Int J Mach Tools Manuf 113:49–58. https://doi.org/10.1016/j.ijmachtools.2016.12.001

    Article  Google Scholar 

  18. Lopes JC, Garcia MV, Valentim M, Javaroni RL, Ribeiro FSF, de Angelo Sanchez LE, de Mello HJ, Aguiar PR, Bianchi EC (2019) Grinding performance using variants of the MQL technique: MQL with cooled air and MQL simultaneous to the wheel cleaning jet. Int J Adv Manuf Technol 105:4429–4442. https://doi.org/10.1007/s00170-019-04574-5

    Article  Google Scholar 

  19. de Moraes DL, Garcia MV, Lopes JC, Ribeiro FSF, de Angelo Sanchez LE, Foschini CR, de Mello HJ, Aguiar PR, Bianchi EC (2019) Performance of SAE 52100 steel grinding using MQL technique with pure and diluted oil. Int J Adv Manuf Technol 105:4211–4223. https://doi.org/10.1007/s00170-019-04582-5

    Article  Google Scholar 

  20. Denkena B, Grove T, Bremer I, Behrens L (2016) Design of bronze-bonded grinding wheel properties. CIRP Ann 65:333–336. https://doi.org/10.1016/J.CIRP.2016.04.096

    Article  Google Scholar 

  21. Denkena B, Grove T, Göttsching T (2015) Grinding with patterned grinding wheels. CIRP J Manuf Sci Technol 8:12–21. https://doi.org/10.1016/J.CIRPJ.2014.10.005

    Article  Google Scholar 

  22. de Martini FL, Lopes JC, Volpato RS et al (2018) Comparative analysis of two CBN grinding wheels performance in nodular cast iron plunge grinding. Int J Adv Manuf Technol 98:237–249. https://doi.org/10.1007/s00170-018-2133-4

    Article  Google Scholar 

  23. Javaroni RL, Lopes JC, Garcia MV, Ribeiro FSF, de Angelo Sanchez LE, de Mello HJ, Aguiar PR, Bianchi EC (2020) Grinding hardened steel using MQL associated with cleaning system and cBN wheel. Int J Adv Manuf Technol 107:2065–2080. https://doi.org/10.1007/s00170-020-05169-1

    Article  Google Scholar 

  24. Lopes JC, Ventura CEH, de M. Fernandes L, et al (2019) Application of a wheel cleaning system during grinding of alumina with minimum quantity lubrication. Int J Adv Manuf Technol 102:333–341. https://doi.org/10.1007/s00170-018-3174-4

  25. Lopes JC, Fragoso KM, Garcia MV, Ribeiro FSF, Francelin AP, de Angelo Sanchez LE, Rodrigues AR, de Mello HJ, Aguiar PR, Bianchi EC (2019) Behavior of hardened steel grinding using MQL under cold air and MQL CBN wheel cleaning. Int J Adv Manuf Technol 105:4373–4387. https://doi.org/10.1007/s00170-019-04571-8

    Article  Google Scholar 

  26. Marinescu ID, Hitchiner MP, Uhlmann E, Rowe WB, Inasaki I (2016) Handbook of machining with grinding wheels. CRC Press

  27. D’Addona DM, Matarazzo D, de Aguiar PR, Bianchi EC, Martins CHR (2016) Neural networks tool condition monitoring in single-point dressing operations. Procedia CIRP 41:431–436. https://doi.org/10.1016/j.procir.2016.01.001

    Article  Google Scholar 

  28. Dai CW, Ding WF, Zhu YJ, Xu JH, Yu HW (2018) Grinding temperature and power consumption in high speed grinding of Inconel 718 nickel-based superalloy with a vitrified CBN wheel. Precis Eng 52:192–200. https://doi.org/10.1016/j.precisioneng.2017.12.005

    Article  Google Scholar 

  29. Javaroni RL, Lopes JC, Sato BK, Sanchez LEA, Mello HJ, Aguiar PR, Bianchi EC (2019) Minimum quantity of lubrication (MQL) as an eco-friendly alternative to the cutting fluids in advanced ceramics grinding. Int J Adv Manuf Technol 103:2809–2819. https://doi.org/10.1007/s00170-019-03697-z

    Article  Google Scholar 

  30. Bianchi EC, Sato BK, Sales AR, Lopes JC, de Mello HJ, de Angelo Sanchez LE, Diniz AE, Aguiar PR (2018) Evaluating the effect of the compressed air wheel cleaning in grinding the AISI 4340 steel with CBN and MQL with water. Int J Adv Manuf Technol 95:2855–2864. https://doi.org/10.1007/s00170-017-1433-4

    Article  Google Scholar 

  31. Talon AG, Lopes JC, Tavares AB, Sato BK, Rodrigues AR, Genovez MC, Dinis Pinto TA, de Mello HJ, Aguiar PR, Bianchi EC (2019) Effect of hardened steel grinding using aluminum oxide wheel under application of cutting fluid with corrosion inhibitors. Int J Adv Manuf Technol 104:1437–1448. https://doi.org/10.1007/s00170-019-04005-5

    Article  Google Scholar 

  32. Marinescu I, Guo L, Wei P (2013) Basic research for the UV fixed abrasive lapping plate. Appl Mech Mater 371:95–100. https://doi.org/10.4028/www.scientific.net/AMM.371.95

    Article  Google Scholar 

  33. Wu Y, Shen M, Qu M, Xie G, Shang Z, Jin T (2019) An experimental investigation on surface layer damage in high-efficiency and low-damage grinding of rail by slotted CBN grinding wheel. Int J Adv Manuf Technol 105:2833–2841. https://doi.org/10.1007/s00170-019-04528-x

    Article  Google Scholar 

  34. Kopac J, Krajnik P (2006) High-performance grinding-a review. J Mater Process Technol 175:278–284. https://doi.org/10.1016/j.jmatprotec.2005.04.010

    Article  Google Scholar 

  35. Tawakoli T, Hadad M, Sadeghi MH, Daneshi A, Sadeghi B (2011) Minimum quantity lubrication in grinding: Effects of abrasive and coolant-lubricant types. J Clean Prod 19:2088–2099. https://doi.org/10.1016/j.jclepro.2011.06.020

    Article  Google Scholar 

  36. Sato BK, Rodriguez RL, Talon AG, Lopes JC, Mello HJ, Aguiar PR, Bianchi EC (2019) Grinding performance of AISI D6 steel using CBN wheel vitrified and resinoid bonded. Int J Adv Manuf Technol 105:2167–2182. https://doi.org/10.1007/s00170-019-04407-5

    Article  Google Scholar 

  37. Sato BK, Lopes JC, Diniz AE, Rodrigues AR, de Mello HJ, Sanchez LEA, Aguiar PR, Bianchi EC (2020) Toward sustainable grinding using minimum quantity lubrication technique with diluted oil and simultaneous wheel cleaning. Tribol Int 147:106276. https://doi.org/10.1016/j.triboint.2020.106276

    Article  Google Scholar 

  38. Ding W-F, Xu J-H, Chen Z-Z, Su HH, Fu YC (2010) Wear behavior and mechanism of single-layer brazed CBN abrasive wheels during creep-feed grinding cast nickel-based superalloy. Int J Adv Manuf Technol 51:541–550. https://doi.org/10.1007/s00170-010-2643-1

    Article  Google Scholar 

  39. Lopes JC, de Martini FL, Garcia MV et al (2020) Performance of austempered ductile iron (ADI) grinding using diluted oil in MQL combined with wheel cleaning jet and different CBN grains friability. Int J Adv Manuf Technol 107:1805–1818. https://doi.org/10.1007/s00170-020-05142-y

    Article  Google Scholar 

  40. Basso A, Sikora J (2012) Review on production processes and mechanical properties of dual phase austempered ductile iron. Int J Met 6:7–14. https://doi.org/10.1007/BF03355473

    Article  Google Scholar 

  41. Ribeiro FSF, Lopes JC, Garcia MV, de Angelo Sanchez LE, de Mello HJ, de Aguiar PR, Bianchi EC (2020) Grinding performance by applying MQL technique: an approach of the wheel cleaning jet compared with wheel cleaning Teflon and Alumina block. Int J Adv Manuf Technol 107:4415–4426. https://doi.org/10.1007/s00170-020-05334-6

    Article  Google Scholar 

  42. Marinescu ID, Rowe WB, Dimitrov B, Ohmori H (2013) Tribology of abrasive machining processes. Elsevier

  43. Lopes JC, de Martini FL, Domingues BB et al (2019) Effect of CBN grain friability in hardened steel plunge grinding. Int J Adv Manuf Technol 103:1567–1577. https://doi.org/10.1007/s00170-019-03654-w

    Article  Google Scholar 

  44. Brinksmeier E, Mutlugünes Y, Klocke F, Aurich JC, Shore P, Ohmori H (2010) Ultra-precision grinding. CIRP Ann 59:652–671. https://doi.org/10.1016/J.CIRP.2010.05.001

    Article  Google Scholar 

  45. ROWE WB (2014) Principles of Modern Grinding Technology. Elsevier

  46. Panneerselvam S, Putatunda SK, Gundlach R, Boileau J (2017) Influence of intercritical austempering on the microstructure and mechanical properties of austempered ductile cast iron (ADI). Mater Sci Eng A 694:72–80. https://doi.org/10.1016/J.MSEA.2017.03.096

    Article  Google Scholar 

  47. Sosa AD, Echeverría MD (2015) Surface alterations produced in grinding of austempered ductile iron. Procedia Mater Sci 8:155–161. https://doi.org/10.1016/J.MSPRO.2015.04.059

    Article  Google Scholar 

  48. Garcia MV, Lopes JC, Diniz AE, Rodrigues AR, Volpato RS, Sanchez LEA, de Mello HJ, Aguiar PR, Bianchi EC (2020) Grinding performance of bearing steel using MQL under different dilutions and wheel cleaning for green manufacture. J Clean Prod 257:120376. https://doi.org/10.1016/j.jclepro.2020.120376

    Article  Google Scholar 

  49. Rodriguez RL, Lopes JC, Garcia MV, Tarrento GE, Rodrigues AR, de Ângelo Sanchez LE, de Mello HJ, de Aguiar PR, Bianchi EC (2020) Grinding process applied to workpieces with different geometries interrupted using CBN wheel. Int J Adv Manuf Technol 107:1265–1275. https://doi.org/10.1007/s00170-020-05122-2

    Article  Google Scholar 

  50. Rodriguez RL, Lopes JC, Hildebrandt RA, Perez RRV, Diniz AE, de Ângelo Sanchez LE, Rodrigues AR, de Mello HJ, de Aguiar PR, Bianchi EC (2019) Evaluation of grinding process using simultaneously MQL technique and cleaning jet on grinding wheel surface. J Mater Process Technol 271:357–367. https://doi.org/10.1016/j.jmatprotec.2019.03.019

    Article  Google Scholar 

  51. Field M, Kegg R, Buescher S (1980) Computerized cost analysis of grinding operations. CIRP Ann 29:233–237. https://doi.org/10.1016/S0007-8506(07)61328-6

    Article  Google Scholar 

  52. Pusavec F, Kramar D, Krajnik P, Kopac J (2010) Transitioning to sustainable production – part II: evaluation of sustainable machining technologies. J Clean Prod 18:1211–1221. https://doi.org/10.1016/j.jclepro.2010.01.015

    Article  Google Scholar 

  53. (2020) Electricity prices. https://www.globalpetrolprices.com/electricity_prices/. Accessed 17 Nov 2020

  54. Demirbas E, Kobya M (2017) Operating cost and treatment of metalworking fluid wastewater by chemical coagulation and electrocoagulation processes. Process Saf Environ Prot 105:79–90. https://doi.org/10.1016/j.psep.2016.10.013

    Article  Google Scholar 

  55. Wang Z, Zhang T, Yu T, Zhao J (2020) Assessment and optimization of grinding process on AISI 1045 steel in terms of green manufacturing using orthogonal experimental design and grey relational analysis. J Clean Prod 253:119896. https://doi.org/10.1016/j.jclepro.2019.119896

    Article  Google Scholar 

  56. Rodriguez RL, Lopes JC, Garcia MV, Fonteque Ribeiro FS, Diniz AE, Eduardo de Ângelo Sanchez L, José de Mello H, Roberto de Aguiar P, Bianchi EC (2020) Application of hybrid eco-friendly MQL+WCJ technique in AISI 4340 steel grinding for cleaner and greener production. J Clean Prod 124670:124670. https://doi.org/10.1016/j.jclepro.2020.124670

    Article  Google Scholar 

  57. Ribeiro FSF, Lopes JC, Talon AG, Garcia MV, de Mello HJ, Sanchez LEDA, de Aguiar PR, Bianchi EC (2020) Comparative analysis between resinoid and vitrified bond grinding wheel under interrupted cutting. Int J Adv Manuf Technol 109:75–85. https://doi.org/10.1007/s00170-020-05667-2

    Article  Google Scholar 

  58. Javaroni RL, Lopes JC, Ribeiro FSF, Garcia MV, de Angelo Sanchez LE, de Mello HJ, Aguiar PR, Bianchi EC (2020) Evaluation of a cooled wheel cleaning jet in minimum quantity lubrication grinding process. Int J Adv Manuf Technol 111:1303–1317. https://doi.org/10.1007/s00170-020-06198-6

    Article  Google Scholar 

  59. Moretti GB, de Moraes DL, Garcia MV, Lopes JC, Ribeiro FSF, Foschini CR, de Mello HJ, Sanchez LEDA, Aguiar PR, Bianchi EC (2020) Grinding behavior of austempered ductile iron: a study about the effect of pure and diluted MQL technique applying different friability wheels. Int J Adv Manuf Technol 108:3661–3673. https://doi.org/10.1007/s00170-020-05577-3

    Article  Google Scholar 

  60. Daniel DM, Ávila BN, Garcia MV, Lopes JC, Ribeiro FSF, de Mello HJ, de Angelo Sanchez LE, Aguiar PR, Bianchi EC (2020) Grinding comparative between ductile iron and austempered ductile iron under CBN wheel combined to abrasive grains with high and low friability. Int J Adv Manuf Technol 109:2679–2690. https://doi.org/10.1007/s00170-020-05787-9

    Article  Google Scholar 

  61. Javaroni RL, Lopes JC, Diniz AE, Garcia MV, Ribeiro FSF, Tavares AB, Talon AG, Sanchez LEA, Mello HJ, Aguiar PR, Bianchi EC (2020) Improvement in the grinding process using the MQL technique with cooled wheel cleaning jet. Tribol Int 152:106512. https://doi.org/10.1016/j.triboint.2020.106512

    Article  Google Scholar 

  62. Lopes JC, Ribeiro FSF, Javaroni RL, Garcia MV, Ventura CEH, Scalon VL, de Angelo Sanchez LE, de Mello HJ, Aguiar PR, Bianchi EC (2020) Mechanical and thermal effects of abrasive cut-off applied in low and medium carbon steels using aluminum oxide cutting disc. Int J Adv Manuf Technol 109:1319–1331. https://doi.org/10.1007/s00170-020-05753-5

    Article  Google Scholar 

  63. Ribeiro FSF, Lopes JC, Garcia MV, de Moraes DL, da Silva AE, de Angelo Sanchez LE, de Aguiar PR, Bianchi EC (2020) New knowledge about grinding using MQL simultaneous to cooled air and MQL combined to wheel cleaning jet technique. Int J Adv Manuf Technol 109:905–917. https://doi.org/10.1007/s00170-020-05721-z

    Article  Google Scholar 

  64. Kuffa M, Kuster F, Wegener K (2017) Comparison of lubrication conditions for grinding of mild steel with electroplated cBN wheel. CIRP J Manuf Sci Technol 18:53–59. https://doi.org/10.1016/J.CIRPJ.2016.09.002

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the companies Nikkon Ferramentas de Corte Ltda - Saint Gobain Group for providing the grinding wheel and ITW Chemical Products for donating the cutting fluids, and the authors thank everyone for the support to the research and opportunity for scientific and technological development.

Funding

The authors thank São Paulo Research Foundation (FAPESP) processes 2018/22661-2 and 2019/24933-2, CAPES (Coordination for the Improvement of Higher Level Education Personnel), and CNPq (National Council for Scientific and Technological Development) for their financial support to this research.

Author information

Authors and Affiliations

Authors

Contributions

Rodrigo Ráfaga de Souza: writing - original draft; writing - review and editing; visualization; conceptualization; formal analysis; investigation; validation.

Douglas Lyra de Moraes: writing - original draft; writing - review and editing; visualization; conceptualization; formal analysis; investigation; validation.

Mateus Vinicius Garcia: writing - original draft; investigation; data curation; formal analysis.

José Claudio Lopes: writing - original draft; resources; conceptualization; methodology; project administration.

Fernando Sabino Fonteque Ribeiro: conceptualization; methodology; validation; writing - original draft.

Hamilton José de Mello: conceptualization; methodology; formal analysis; investigation; validation.

Luiz Eduardo de Angelo Sanchez: writing - review and editing; conceptualization; supervision.

Paulo Roberto Aguiar: software; supervision.

Eduardo Carlos Bianchi: funding acquisition; conceptualization; resources; supervision; project administration.

Corresponding author

Correspondence to José Claudio Lopes.

Ethics declarations

Ethics approval and consent to participate

The authors declare that this manuscript was not submitted to more than one journal for simultaneous consideration. Also, the submitted work is original and not have been published elsewhere in any form or language. The authors declare that they participated in this paper willingly.

Consent for publication

The authors consent to the publication of this paper.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, R.R., de Moraes, D.L., Garcia, M.V. et al. Effect of grinding with different CBN grains applied to austempered ductile iron linked to quality and industrial cost. Int J Adv Manuf Technol 113, 807–820 (2021). https://doi.org/10.1007/s00170-021-06647-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-06647-w

Keywords

Navigation