Skip to main content
Log in

Inducement of residual stresses in WC-5%Co cutting inserts by plunge-face grinding

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Based on the analysis of the ground surface, grinding forces, and energy, this paper brings a comprehensive approach to determine the effects of different process parameters (cutting and feed speeds, dressing feed speed, abrasive grain size, and grinding wheel bonding material) on the inducement of residual stresses in cemented tungsten carbide cutting inserts finished by plunge-face grinding. The obtained results demonstrated that compressive residual stresses of higher magnitude are mainly observed in the direction perpendicular to the abrasive grain path and can be achieved by the application of vitrified bonded grinding wheels with coarser abrasive grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Klocke F, Wirtz C, Mueller S, Mattfeld P (2016) Analysis of the material behavior of cemented carbides (WC-Co) in grinding by single grain cutting tests. Proc CIRP 46:209–213. https://doi.org/10.1016/j.procir.2016.03.209

    Article  Google Scholar 

  2. Bifano TG, Fawcett SC (1991) Specific grinding energy as an in-process control variable for ductile-regime grinding. Precis Eng 13:256–262. https://doi.org/10.1016/0141-6359(91)90003-2

    Article  Google Scholar 

  3. Zelwer O, Malkin S (1980) Grinding of WC-Co cemented carbides. J Eng Ind 102:209–220. https://doi.org/10.4028/www.scientific.net/AMR.1017.573

    Article  Google Scholar 

  4. Ren YH, Zhang B, Zhou ZX (2009) Specific energy in grinding of tungsten carbides of various grain sizes. CIRP Ann Manuf Technol 58:299–302. https://doi.org/10.1016/j.cirp.2009.03.026

    Article  Google Scholar 

  5. Larsen-Basse J (1985) Binder extrusion in sliding wear of WC-Co alloys. Wear 105:247–256. https://doi.org/10.1016/0043-1648(85)90071-7

    Article  Google Scholar 

  6. Sarin VK, Johannesson T (1975) On the deformation of WC-Co cemented carbides. Metal Sci 9:472–476. https://doi.org/10.1179/030634575790444531

    Article  Google Scholar 

  7. Rettenmayr M, Exner HE, Mader W (1988) Electron microscopy of binder phase deformation in WC-Co alloys. Mater Sci Technol 4:984–990. https://doi.org/10.1179/mst.1988.4.11.984

    Article  Google Scholar 

  8. Yang J, Roa JJ, Schwind M, Odén M, Johansson-Jõesaar MP, Llanes L (2017) Grinding-induced metallurgical alterations in the binder phase of WC-Co cemented carbides. Mater Charact 134:302–310. https://doi.org/10.1016/j.matchar.2017.11.004

    Article  Google Scholar 

  9. Zuñega JCP, Gee M, Wood RJK, Walker J (2012) Scratch testing of WC/Co hardmetals. Tribol Int 54:77–86. https://doi.org/10.1016/j.triboint.2012.02.027

    Article  Google Scholar 

  10. Johnson-Walls D, Evans AG, Marshall DB, James MR (1986) Residual stresses in machined ceramic surfaces. J Am Ceram Soc 69:44–47. https://doi.org/10.1111/j.1151-2916.1986.tb04691.x

    Article  Google Scholar 

  11. Yang J, Odén M, Johansson-Jõesaar MP, Llanes L (2014) Grinding effects on surface integrity and mechanical strength of WC-Co cemented carbides. Proc CIRP 13:257–263. https://doi.org/10.1016/j.procir.2014.04.044

    Article  Google Scholar 

  12. Brinksmeier E, Cammett JT, König W, Leskovar P, Peters J, Tönshoff HK (1982) Residual stresses – Measurement and causes in machining processes. CIRP Ann 31:491–510. https://doi.org/10.1016/S0007-8506(07)60172-3

    Article  Google Scholar 

  13. Hegeman JBJW, De Hosson JTM, With G (2001) Grinding of WC-Co hardmetals. Wear 248:187–196. https://doi.org/10.1016/S0043-1648(00)00561-5

    Article  Google Scholar 

  14. Jiang D, Anné G, Vleugels J, Vanmeensel K, Eeraerts W, Liu W, Lauwers B, Biest OV (2005) Residual stresses in hardmetals caused by grinding and EDM machining and their influence on the flexural strength. Powder Metall High Perform Mater 2:1075–1085

    Google Scholar 

  15. Zhao X (2010) WC-Co tool failure analysis and the grinding effect study. Adv Mater Res 139–141:269–273. https://doi.org/10.4028/www.scientific.net/AMR.139-141.269

    Article  Google Scholar 

  16. Gladkikh LI, Sverdlova BM, Fuks MY (1968) Residual stresses in surface layers of carbide tool tips after diamond grinding. Fiz-Khim Mekh Mater 4:697–702. https://doi.org/10.1007/BF00721676

    Article  Google Scholar 

  17. Liu X, Zhang B (2002) Effects of grinding process on residual stresses in nanostructured ceramic coatings. J Mater Sci 37:3229–3239. https://doi.org/10.1023/A:1016174731658

    Article  Google Scholar 

  18. Zoei MS, Sadeghi MH, Salehi M (2016) Effect of grinding parameters on the wear resistance and residual stress of HVOF-deposited WC-10Co-4Cr coating. Surf Coat Technol 307:886–891. https://doi.org/10.1016/j.surfcoat.2016.09.067

    Article  Google Scholar 

  19. Masoumi H, Safavi SM, Salehi M, Nahvi SM (2014) Effect of grinding on the residual stress and adhesion strength of HVOF thermally sprayed WC-10Co-4Cr coating. Mater Manuf Process 29:1139–1151. https://doi.org/10.1080/10426914.2014.930893

    Article  Google Scholar 

  20. Mao C, Liang C, Zhang Y, Zhang M, Hu Y, Bi Z (2017) Grinding characteristics of cBN-WC-10Co composites. Ceram Int 43:16539–16547. https://doi.org/10.1016/j.ceramint.2017.09.040

    Article  Google Scholar 

  21. Takeyama H, Iijima N, Uno K (1982) Surface integrity of cemented carbide tool and its brittle fracture. CIRP Ann Manuf Technol 31:59–63. https://doi.org/10.1016/S0007-8506(07)63269-7

    Article  Google Scholar 

  22. Withers PJ, Bhadeshia HKDH (2001) Residual stress part 1 – Measurement techniques. Mater Sci Technol 17:355–365. https://doi.org/10.1179/026708301101509980

    Article  Google Scholar 

  23. Denkena B, Köhler J, Ventura CEH (2013) Customized cutting edge preparation by means of grinding. Precis Eng 37:590–598. https://doi.org/10.1016/j.precisioneng.2013.01.004

    Article  Google Scholar 

  24. Cruz DC, Sordi VL, Ventura CEH (2020) Surface analysis of WC-5%Co cemented tungsten carbide cutting insert after plunge-face grinding. Int J Adv Manuf Technol 108:323–330. https://doi.org/10.1007/s00170-020-05382-y

    Article  Google Scholar 

  25. Klocke F (2011) Manufacturing Processes 1: Cutting. Springer-Verlag, Berlin

    Book  Google Scholar 

  26. Team RS (2020) RS studio: integrated development environment for R. http://www.rstudio.com. Accessed 2 July 2020

  27. Grömping U (2014) R package FrF2 for creating and analyzing fractional factorial 2-level designs. J Stat Softw 56:1–56. https://doi.org/10.18637/jss.v056.i01

    Article  MathSciNet  Google Scholar 

  28. Lenth RV (2009) Response-surface methods in R, using RSM. J Stat Softw 32:1–17. https://doi.org/10.18637/jss.v032.i07

    Article  Google Scholar 

  29. Wickham H (2016) ggplot2: Elegant graphics for data analysis. Springer-Verlag, New York

    Book  Google Scholar 

  30. Klocke F (2009) Manufacturing processes 2: grinding, honing, lapping. Springer-Verlag, Berlin

    Book  Google Scholar 

  31. Tönshoff HK, Denkena B (2013) Basics of cutting and abrasive processes. Springer-Verlag, Berlin

    Book  Google Scholar 

  32. Denkena B, Köhler J, Ventura CEH (2014) Influence of grinding parameters on the quality of high content PCBN cutting inserts. J Mater Process Technol 214:276–284. https://doi.org/10.1016/j.jmatprotec.2013.09.013

    Article  Google Scholar 

  33. Jaensson BO (1971) Residual stresses and stress-strain behaviour of the WC-Co composite material. Mater Sci Eng 8:41–53. https://doi.org/10.1016/0025-5416(71)90041-3

    Article  Google Scholar 

  34. Zahedi A, Tawakoli T, Akbari J, Azarhoushang B (2014) Conditioning of vitrified bond CBN grinding wheels using a picosecond laser. Adv Mater Res 1017:573–579. https://doi.org/10.4028/www.scientific.net/AMR.1017.573

    Article  Google Scholar 

  35. US Army Industrial Engineering Activity (1991) Plastic matrix composites with continuous fiber reinforcement. Military Handbook. US Department of Defense. https://apps.dtic.mil/dtic/tr/fulltext/u2/a307849.pdf. Accessed 17 Jun 2020

Download references

Acknowledgements

The authors would like to thank the Federal University of West Bahia (UFOB) and the Federal University of São Carlos, Graduate Program in Materials Science and Engineering, for supporting this research. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brasil (CAPES)–Finance Code 001. The São Paulo Research Foundation (FAPESP) is also gratefully acknowledged for financial support (grant numbers 2015/15622-2, 2017/12309-7, and 2017/12304-5) and the Brazilian Nanotechnology National Laboratory is acknowledged for providing residual stress measurements.

Funding

This work was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brasil (CAPES)–Finance Code 001 and was financially supported by the São Paulo Research Foundation (FAPESP) (grant numbers 2015/15622-2, 2017/12309-7, and 2017/12304-5).

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Carlos Eiji Hirata Ventura.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz, D.C., Christoforo, A.L., Sordi, V.L. et al. Inducement of residual stresses in WC-5%Co cutting inserts by plunge-face grinding. Int J Adv Manuf Technol 113, 553–563 (2021). https://doi.org/10.1007/s00170-020-06583-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-06583-1

Keywords

Navigation