Skip to main content
Log in

Feedrate scheduling of a five-axis hybrid robot for milling considering drive constraints

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Characterized by high rigidity and precision, large working space, and reconfigurability, hybrid kinematic machines are widely used in the five-axis machining of large parts in situ. The feedrate is limited by the velocity, acceleration, and jerk of actuated joints in high-speed machining due to the nonlinear motion introduced by the use of revolute joints and parallel kinematic module. To achieve a good balance between the machining accuracy and efficiency, an offline feedrate-scheduling algorithm considering the drive constraints of a five-axis hybrid machine is proposed. By adding a dimension of the curve parameter, the feedrate profile expressed by a cubic uniform B-spline is mapped into a two-dimensional curve with the redefined control points. Then, the feedrate-scheduling process is completed by iteratively modulating the control points of feedrate profile. The velocity, acceleration, and jerk of actuated joints are calculated by the kinematic analysis for a dual non-uniform rational basis spline (NURBS) toolpath. Based on this, the feedrate constraint equations are derived considering the geometry and drive constraints. The scheduled feedrate profile remains constant in most parameter intervals, while it changes smoothly in transition intervals without violating constraints. Simulations and experiments are carried out on the TriMule600/800 machining platform, and the results validate the correctness and effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Data availability

The data sets generated or analyzed during this study are included in the submission of this manuscript.

Abbreviations

u :

Curve parameter of the parametric toolpath

k :

The order of the parametric toolpath and the feedrate profile

P(u):

3D Spline curve of the cutter tip position (mm)

P (u), P (u):

the first and second derivatives of P(u) with respect to u

O(u):

3D spline curve of the cutter axis orientation

ψ(u):

2D spline curve of the attitude angle (rad)

q :

Actuated joint position vector (mm) and (rad)

\( \dot{\boldsymbol{q}},\ddot{\boldsymbol{q}},\overset{\dots }{\boldsymbol{q}} \) :

The first, second, and third derivatives of q(u) with respect to time t

x :

Cutter location vector in the operation space (mm) and (rad)

\( \dot{\boldsymbol{x}},{\boldsymbol{x}}^{\prime } \) :

the first derivative of x(u) with respect to time t and parameter u respectively

T s :

Interpolation period of the CNC system

F(u),\( {\left\{{\boldsymbol{F}}_i\right\}}_{i=0}^{M-1} \) :

The feedrate profile of cutter tip position and its 2D control points

F (u), F (u):

The first and second derivatives of F(u) with respect to parameter u

δ, V ce :

Chord error and the maximum feasible feedrate

A, J :

Tangential acceleration and jerk of the cutter tip position

ω, V w :

Angular velocity and the maximum feasible feedrate

ω A :

Angular acceleration of the cutter axis

J a :

The [5 × 5] Jacobian matrix of the machining equipment

\( \hat{\boldsymbol{V}},\hat{\boldsymbol{A}},\hat{\boldsymbol{J}} \) :

Velocity, acceleration, and jerk vectors of the actuated joints

M :

Number of control points of the feedrate profile

U f :

Node vector of the feedrate profile

\( {\left\{{c}_i\right\}}_{i=0}^{M-1} \) :

The added parameter dimension of control points of the feedrate profile

F 1(u),\( {\left\{{\boldsymbol{F}}_{1,i}\right\}}_{i=0}^{M-1} \) :

initial feedrate profile considering process constraint and its 2D control points

V p, lim :

Specified process feedrate

F f(u), \( {\left\{{\boldsymbol{F}}_{f,i}\right\}}_{i=0}^{M-1} \) :

Feedrate profile considering the NI constraints and its 2D control points

F s(u), \( {\left\{{\boldsymbol{F}}_{s,i}\right\}}_{i=0}^{M-1} \) :

Feedrate profile after the iterative adjustment based on feedrate-constant interval and its 2D control points

\( {\left\{{u}_i^{\ast}\right\}}_{i=1}^{N_{\mathrm{sp}}} \) :

Parameter set of the sampling points

N sp :

The number of the sampling points

σ(u):

The change rate of the cutter axis orientation O(u)

κ(u):

Curvature of cutter tip position curve P(u)

\( {\left\{{\prod}_i\right\}}_{i=1}^{N_{\mathrm{fc}}} \) :

Feedrate-constant intervals

N fc :

The number feedrate-constant intervals

η :

Proportional adjustment coefficient

\( {\left\{{M}_{\mathrm{fc},i}\right\}}_{i=1}^{N_{\mathrm{fc}}} \) :

The number of control points related to interval ∏i

\( {\left\{{F}_{\mathrm{fc},i}\right\}}_{i=1}^{N_{\mathrm{fc}}} \) :

Constant feedrate value of interval ∏i

\( {\left\{{M}_{f,i}\right\}}_{i=1}^{N_{\mathrm{fc}}} \) :

The number of control points adjusted in the acceleration stage

\( {\left\{{M}_{b,i}\right\}}_{i=1}^{N_{\mathrm{fc}}} \) :

The number of control points adjusted in the deceleration stage

γ :

The difference between the ordinates of two adjacent 2D control points during the linear adjustment

\( {\left\{{M}_{\mathrm{ct},i}\right\}}_{i=1}^{N_{\mathrm{fc}}} \) :

The index of the last control point associated with interval ∏i

References

  1. Zhang J, Zhang LQ, Zhang K, Mao J (2016) Double NURBS trajectory generation and synchronous interpolation for five-axis machining based on dual quaternion algorithm. Int J Adv Manuf Technol 83(9–12):2015–2025. https://doi.org/10.1007/s00170-015-7723-9

    Article  Google Scholar 

  2. Mi ZP, Yuan CM, Ma XH, Shen LY (2017) Tool orientation optimization for 5-axis machining with C-space method. Int J Adv Manuf Technol 88:1243–1255. https://doi.org/10.1007/s00170-016-8849-0

    Article  Google Scholar 

  3. Uriarte L, Zatarain M, Axinte D, Yagüe-Fabra J, Ihlenfeldt S, Eguia J, Olarra A (2013) Machine tools for large parts. CIRP Ann Manuf Technol 62:731–750. https://doi.org/10.1016/j.cirp.2013.05.009

    Article  Google Scholar 

  4. Hosseini MA, Daniali HRM, Taghirad HD (2011) Dexterous workspace optimization of a Tricept parallel manipulator. Adv Robot 25(13–14):1697–1712. https://doi.org/10.1163/016918611X584640

    Article  Google Scholar 

  5. Bi ZM, Jin Y (2011) Kinematic modeling of Exechon parallel kinematic machine. Robot Comput Integr Manuf 27(1):186–193. https://doi.org/10.1016/j.rcim.2010.07.006

    Article  Google Scholar 

  6. Dong CL, Liu HT, Liu Q, Sun T, Huang T, Chetwynd DG (2018) An approach for type synthesis of overconstrained 1T2R parallel mechanisms. In: Zeghloul S, Romdhane L, Laribi M (eds) Computational kinematics, Mechanisms and machine science, vol 50. Springer, Cham, pp 274–281. https://doi.org/10.1007/978-3-319-60867-9_31

    Chapter  Google Scholar 

  7. Yang DCH, Kong T (1994) Parametric interpolator versus linear interpolator for precision CNC machining. Comput Aided Des 26(3):225–234. https://doi.org/10.1016/0010-4485(94)90045-0

    Article  MATH  Google Scholar 

  8. Cheng MY, Tsai MC, Kuo JC (2002) Real-time NURBS command generators for CNC servo controllers. Int J Mach Tools Manuf 42(7):801–813. https://doi.org/10.1016/s0890-6955(02)00015-9

    Article  Google Scholar 

  9. Wu JC, Zhou HC, Tang XQ, Chen JH (2012) A NURBS interpolation algorithm with continuous feedrate. Int J Adv Manuf Technol 59(5–8):623–632. https://doi.org/10.1007/s00170-011-3520-2

    Article  Google Scholar 

  10. Langeron JM, Duc E, Lartigue C, Bourdet P (2004) A new format for 5-axis tool path computation, using B-spline curves. Comput Aided Des 36(12):1219–1229. https://doi.org/10.1016/j.cad.2003.12.002

    Article  Google Scholar 

  11. Fleisig RV, Spence AD (2001) A constant feed and reduced angular acceleration interpolation algorithm for multi-axis machining. Comput Aided Des 33(1):1–15. https://doi.org/10.1016/s0010-4485(00)00049-x

    Article  Google Scholar 

  12. Yuen A, Zhang K, Altintas Y (2013) Smooth trajectory generation for five-axis machine tools. Int J Mach Tools Manuf 71:11–19. https://doi.org/10.1016/j.ijmachtools.2013.04.002

    Article  Google Scholar 

  13. Lu L, Zhang L, Ji SJ, Han YJ, Zhao J (2016) An offline predictive feedrate scheduling method for parametric interpolation considering the constraints in trajectory and drive systems. Int J Adv Manuf Technol 83(9–12):2143–2157. https://doi.org/10.1007/s00170-015-8112-0

    Article  Google Scholar 

  14. Shin K, Mckay N (1985) Minimum-time control of robotic manipulators with geometric path constraints. IEEE Trans Autom Control 30(6):531–541. https://doi.org/10.1109/TAC.1985.1104009

    Article  MATH  Google Scholar 

  15. Bobrow JE, Dubowsky S, Gibson JS (1985) Time-optimal control of robotic manipulators along specified paths. Int J Robot Res 4(3):3–17. https://doi.org/10.1177/027836498500400301

    Article  Google Scholar 

  16. Yeh SS, Hsu PL (2002) Adaptive-feedrate interpolation for parametric curves with a confined chord error. Comput Aided Des 34(3):229–237. https://doi.org/10.1016/s0010-4485(01)00082-3

    Article  Google Scholar 

  17. Zhiming X, Jincheng C, Zhengjin F (2002) Performance evaluation of a real-time interpolation algorithm for NURBS curves. Int J Adv Manuf Technol 20:270–276. https://doi.org/10.1007/s001700200152

    Article  Google Scholar 

  18. Conway JR, Darling AL, Ernesto CA, Farouki RT, Palomares CA (2013) Experimental study of contouring accuracy for CNC machines executing curved paths with constant and curvature-dependent feedrates. Robot Comput Integr Manuf 29(2):357–369. https://doi.org/10.1016/j.rcim.2012.09.006

    Article  Google Scholar 

  19. Erkorkmaz K, Altintas Y (2001) High speed CNC system design. Part I: jerk limited trajectory generation and quintic spline interpolation. Int J Mach Tools Manuf 41(9):1323–1345. https://doi.org/10.1016/S0890-6955(01)00002-5

    Article  Google Scholar 

  20. Lin MT, Tsai MS, Yau HT (2007) Development of a dynamics-based NURBS interpolator with real-time look-ahead algorithm. Int J Mach Tools Manuf 47(15):2246–2262. https://doi.org/10.1016/j.ijmachtools.2007.06.005

    Article  Google Scholar 

  21. Jia ZY, Song DN, Ma JW, Hu GQ, Su WW (2017) A NURBS interpolator with constant speed at feedrate-sensitive regions under drive and contour-error constraints. Int J Mach Tools Manuf 116:1–17. https://doi.org/10.1016/j.ijmachtools.2016.12.007

    Article  Google Scholar 

  22. Barre PJ, Bearee R, Borne P, Dumetz E (2005) Influence of a jerk controlled movement law on the vibratory behaviour of high-dynamics systems. J Intell Robot Syst 42:275–293. https://doi.org/10.1007/s10846-004-4002-7

    Article  Google Scholar 

  23. Lu TC, Chen SL (2016) Genetic algorithm-based S-curve acceleration and deceleration for five-axis machine tools. Int J Adv Manuf Technol 87(1–4):219–232. https://doi.org/10.1007/s00170-016-8464-0

    Article  Google Scholar 

  24. Sencer B, Altintas Y, Croft E (2008) Feed optimization for five-axis CNC machine tools with drive constraints. Int J Mach Tools Manuf 48(7–8):733–745. https://doi.org/10.1016/j.ijmachtools.2008.01.002

    Article  Google Scholar 

  25. Beudaert X, Pechard PY, Tournier C (2011) 5-Axis tool path smoothing based on drive constraints. Int J Mach Tools Manuf 51(12):958–965. https://doi.org/10.1016/j.ijmachtools.2011.08.014

    Article  Google Scholar 

  26. Beudaert X, Lavernhe S, Tournier C (2012) Feedrate interpolation with axis jerk constraints on 5-axis NURBS and G1 tool path. Int J Mach Tools Manuf 57:73–82. https://doi.org/10.1016/j.ijmachtools.2012.02.005

    Article  Google Scholar 

  27. Sun YW, Zhao Y, Xu JT, Guo DM (2014) The feedrate scheduling of parametric interpolator with geometry, process and drive constraints for multi-axis CNC machine tools. Int J Mach Tools Manuf 85:49–57. https://doi.org/10.1016/j.ijmachtools.2014.05.001

    Article  Google Scholar 

  28. Sun YW, Zhao Y, Bao YR, Gu DM (2015) A smooth curve evolution approach to the feedrate planning on five-axis toolpath with geometric and kinematic constraints. Int J Mach Tools Manuf 97:86–97. https://doi.org/10.1016/j.ijmachtools.2015.07.002

    Article  Google Scholar 

  29. Chen MS, Xu JT, Sun YW (2017) Adaptive feedrate planning for continuous parametric tool path with confined contour error and axis jerks. Int J Adv Manuf Technol 89(1–4):1113–1125. https://doi.org/10.1007/s00170-016-9021-6

    Article  Google Scholar 

  30. Liu H, Liu Q, Yuan SM (2017) Adaptive feedrate planning on parametric tool path with geometric and kinematic constraints for CNC machining. Int J Adv Manuf Technol 90(5–8):1889–1896. https://doi.org/10.1007/s00170-016-9483-6

    Article  Google Scholar 

  31. Liang FS, Zhao J, Ji SJ (2017) An iterative feed rate scheduling method with confined high-order constraints in parametric interpolation. Int J Adv Manuf Technol 92(5–8):2001–2015. https://doi.org/10.1007/s00170-017-0249-6

    Article  Google Scholar 

  32. Lu L, Zhang J, Fuh JYH, Han J, Wang H (2020) Time-optimal tool motion planning with tool-tip kinematic constraints for robotic machining of sculptured surfaces. Robot Comput Integr Manuf 65:65. https://doi.org/10.1016/j.rcim.2020.101969

    Article  Google Scholar 

  33. Sang YC, Yao CL, Lv YQ, He GY (2020) An improved feedrate scheduling method for NURBS interpolation in five-axis machining. Precis Eng 64:70–90. https://doi.org/10.1016/j.precisioneng.2020.03.012

    Article  Google Scholar 

  34. Wang TY, Zhang YB, Dong JC, Ke RJ, Ding YY (2020) NURBS interpolator with adaptive smooth feedrate scheduling and minimal feedrate fluctuation. Int J Precis Eng Manuf 21:273–290. https://doi.org/10.1007/s12541-019-00288-6

    Article  Google Scholar 

  35. Piegl L, Tiller W (1997) The NURBS book, seconded. Springer Berlin Heidelberg, New York. https://doi.org/10.1007/978-3-642-59223-2

    Book  MATH  Google Scholar 

  36. Liu HT, Chen WF, Huang T, Ding HF, Kecskemethy A (2019) Dynamic modelling of lower mobility parallel manipulators. In: Kecskeméthy A, Geu FF (eds) Multibody dynamics 2019. ECCOMAS 2019, Computational methods in applied sciences, vol 53. Springer, Cham, pp 292–298. https://doi.org/10.1007/978-3-030-23132-3_35

    Chapter  Google Scholar 

  37. Lei WT, Sung MP, Lin LY, Huang JJ (2007) Fast real-time NURBS path interpolation for CNC machine tools. Int J Mach Tools Manuf 47(10):1530–1541. https://doi.org/10.1016/j.ijmachtools.2006.11.011

    Article  Google Scholar 

  38. Liu Q, Huang T (2019) Inverse kinematics of a 5-axis hybrid robot with non-singular tool path generation. Robot Comput Integr Manuf 56:140–148. https://doi.org/10.1016/j.rcim.2018.06.003

    Article  Google Scholar 

  39. Luo FY, Zhou YF, Yin J (2007) A universal velocity profile generation approach for high-speed machining of small line segments with look-ahead. Int J Adv Manuf Technol 35(5–6):505–518. https://doi.org/10.1007/s00170-006-0735-8

    Article  Google Scholar 

Download references

Funding

This work is partially supported by the National Key R&D program of China (Grant No. 2017YFB1301800), National Natural Science Foundation of China (Grants 91948301, 51721003, and 51675369), Tianjin Science and Technology Program (Grant No. 17JCZDJC40100), and EU H2020-RISE-ECSASDP (Grant 734272).

Author information

Authors and Affiliations

Authors

Contributions

HL was in charge of the whole trial; GL wrote the manuscript; WY assisted with the process of analysis; and JX provided the assistance of theory. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Haitao Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

(MP4 126,829 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Liu, H., Yue, W. et al. Feedrate scheduling of a five-axis hybrid robot for milling considering drive constraints. Int J Adv Manuf Technol 112, 3117–3136 (2021). https://doi.org/10.1007/s00170-020-06559-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-06559-1

Keywords

Navigation