Skip to main content

Buckling and wrinkling of rectangular hollow sections curved in three-point-roll bending

Abstract

Curved aluminium extrusions are applied in a wide range of industrial applications. Because extrusions are initially straight, an additional process is required to curve the product. Undesired wrinkling of the plate part at the inner radius is frequently observed during the curving process. Wrinkling has already been extensively studied for the rotary-draw bending process. This paper aims at predicting the conditions for which wrinkling of a hollow section can occur during the three-point-roll bending process. It is shown that the most important condition for wrinkling is that buckling of the compressed plate part at the inner radius occurs. An analytical prediction model for buckling is presented, which predicts the critical bending radius as a function of the plate slenderness. The analytical model is validated with a finite element model, which in turn is validated with an experiment. Both the finite element model and the experiment confirm that wrinkling does not occur if the applied radius exceeds the model predicted critical radius.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

References

  1. 1.

    Zhu X, Ogi K, Okabe N (2019) Study on wrinkles during rotary-draw bending forming. Mater Sci Forum 943:43–47. https://doi.org/10.4028/www.scientific.net/msf.943.43

    Article  Google Scholar 

  2. 2.

    He Y, Jing Y, Mei Z, Heng L, Yongle K (2009) 3D numerical study on wrinkling characteristics in NC bending of aluminum alloy thin-walled tubes with large diameters under multi-die constraints. Comput Mater Sci 45:1052–1067. https://doi.org/10.1016/j.commatsci.2009.01.010

    Article  Google Scholar 

  3. 3.

    Xiao Y, Liu Y, Yang H, Ren J (2013) Optimization of processing parameters for double-ridged rectangular tube rotary draw bending based on grey relational analysis. Int J Adv Manuf Technol 70:2003–2011. https://doi.org/10.1007/s00170-013-5429-4 K . X. L., Shunqi Z., Y. S. Z., Y. C., Y. H

    Article  Google Scholar 

  4. 4.

    Chen J, Daxin E, Zhang J (2013) Effects of process parameters on wrinkling of thin-walled circular tube under rotary draw bending. Int J Adv Manuf Technol 68:1505–1516. https://doi.org/10.1007/s00170-013-4938-5

    Article  Google Scholar 

  5. 5.

    Li H, Liu Y, Zhu Y, Yang H (2014) Global sensitivity analysis and coupling effects of forming parameters on wall thinning and cross-sectional distortion of rotary draw bending of thin-walled rectangular tube with small bending radius. Int J Adv Manuf Technol 74:581–589. https://doi.org/10.1007/s00170-014-6014-1

    Article  Google Scholar 

  6. 6.

    Safdarian R (2019) Experimental and numerical investigation of wrinkling and tube ovality in the rotary draw bending process. Proc Inst Mech Eng C J Mech Eng Sci 233:5568–5584. https://doi.org/10.1177/0954406219850857

    Article  Google Scholar 

  7. 7.

    Fang J, Lu S, Liang C, Zheng D, Wang J (2019) Mandrel role in numerical control rotary draw bending process of TA18 high strength titanium alloy tube. Mater Sci Eng 631:022065. https://doi.org/10.1088/1757-899x/631/2/022065

  8. 8.

    Liang J, Li J, Wang A, Li Y, Liang C (2020) Study on the influence of different cores on section quality in the process of pure rolling rotary draw bending wrinkling of profiles with “日”-shape section. Int J Adv Manuf Technol 110:471–479. https://doi.org/10.1007/s00170-020-05903-9

    Article  Google Scholar 

  9. 9.

    Timoshenko SP, Gere JM (2012) Theory of elastic stability, 2nd edn. McGraw-Hill

  10. 10.

    Li H, Yang H, Zhang Z, Li G, Liu N, Welo T (2014) Multiple instability-constrained tube bending limits. J Mater Process Technol 214:445–455. https://doi.org/10.1016/j.jmatprotec.2013.09.027

    Article  Google Scholar 

  11. 11.

    Li H, Yang H, Zhan M (2009) A study on plastic wrinkling in thin-walled tube bending via an energy-based wrinkling prediction model. Model Simul Mater Sci Eng 17:035007. https://doi.org/10.1088/0965-0393/17/3/035007

    Article  Google Scholar 

  12. 12.

    Jie D, Yuli L, He Y Research on the sensitivity of material parameters to cross-sectional deformation of thin-walled rectangular tube in rotary draw bending process. J Mater Res 31:1784–1792. https://doi.org/10.1557/jmr.2016.194

  13. 13.

    Zhao G, Liu Y, Dong C, Yang H, Fan X (2010) Analysis of wrinkling limit of rotary-draw bending process for thin-walled rectangular tube. J Mater Process Technol 210:1224–1231. https://doi.org/10.1016/j.jmatprotec.2010.03.009

    Article  Google Scholar 

  14. 14.

    Guangjun L, Heng Y, Xudong X, Heng L, He Y (2018) Formability of thin-walled commercial pure titanium tube upon rotary draw bending. Rare Metal Mater Eng 47:26–32. https://doi.org/10.1016/s1875-5372(18)30066-3

    Article  Google Scholar 

  15. 15.

    Hasanpour K, Barati M, Amini B, Poursina M (2013) The effect of anisotropy on wrinkling of tube under rotary draw bending. J Mech Sci Technol 27:783–792. https://doi.org/10.1007/s12206-013-0124-9

    Article  Google Scholar 

  16. 16.

    Li H, Ma J, Liu B, Gu R, Li G (2018) An insight into neutral layer shifting in tube bending. Int J Mach Tools Manuf 126:51–70. https://doi.org/10.1016/j.ijmachtools.2017.11.013

    Article  Google Scholar 

  17. 17.

    Liu K, Zheng S, Zheng Y, Chen Y, He Y (2016) Plate assembly effect and cross-section distortion of rectangular tube in rotary draw bending. Int J Adv Manuf Technol 90:177–188. https://doi.org/10.1007/s00170-016-9283-z

    Article  Google Scholar 

  18. 18.

    Shim DS, Kim KP, Lee KY (2016) Double-stage forming using critical pre-bending radius in roll bending of pipe with rectangular cross-section. J Mater Process Technol 236:189–203. https://doi.org/10.1016/j.jmatprotec.2016.04.033

    Article  Google Scholar 

  19. 19.

    Qiao P, Shan L (2007) Explicit local buckling analysis of rotationally restrained composite plates under biaxial loading. Int J Struct Stab Dyn 07:487–517. https://doi.org/10.1142/s021945540700240x

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Ventsel E, Krauthammer T (2001) Thin plates and shells. CRC Press, Boca Raton

    Book  Google Scholar 

  21. 21.

    Alfutov NA (2013) Stability of elastic structures. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  22. 22.

    Stowell ZE (1948) A unified theory of plastic buckling of columns and plates. National Advisory Committee for Aeronautics. Langley Aeronautical Lab, Hampton

    Google Scholar 

  23. 23.

    Mazzolani F (1998) Aluminium alloy structures, 2nd edn. E&FN Spon

  24. 24.

    Chakrabarty J (2010) Applied plasticity, 2nd edn. Springer Science+Business, New York

    MATH  Google Scholar 

  25. 25.

    Shin JG, Lee JH, Kim YI, Yim H (2001) Mechanics-based determination of the center roller displacement in three-roll bending for smoothly curved rectangular plates. KSME Int J 15:1655–1663. https://doi.org/10.1007/bf03185120

    Article  Google Scholar 

  26. 26.

    Maljaars J, Soetens F, Snijder HH (2010) Local buckling of fire exposed aluminium members: new design model. J Struct Eng 136:66–75. https://doi.org/10.1061/(asce)st.1943-541x.0000091

    Article  Google Scholar 

Download references

Acknowledgments

Bart Simonse (Kersten Europe) is kindly acknowledged for sharing his experience in TPRB and for providing access to their TPRB machines and materials. Okko Coppejans (TNO) and Roel Spoorenberg (Femtec) are acknowledged for their support in selecting appropriate settings for the FE model.

Author information

Affiliations

Authors

Contributions

RC has performed the FE simulations. The three authors contributed equally to the manuscript.

Corresponding author

Correspondence to Johan Maljaars.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cornelissen, R., Maljaars, J. & Hofmeyer, H. Buckling and wrinkling of rectangular hollow sections curved in three-point-roll bending. Int J Adv Manuf Technol 112, 2091–2107 (2021). https://doi.org/10.1007/s00170-020-06443-y

Download citation

Keywords

  • Three-point-roll bending
  • Curving
  • Local buckling
  • Wrinkling
  • Process simulation