Skip to main content
Log in

Research on in situ monitoring of selective laser melting: a state of the art review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

As an additive manufacturing technology, selective laser melting (SLM) can form any complex metal parts, which has unparalleled advantages compared to traditional processing methods. However, there are still some problems such as accuracy and non-repeatability to overcome to apply SLM to production practice. The high-precision monitoring and degradation feedback technology of SLM equipment is the future development direction. The real-time monitoring machine can repair itself and avoid the tedious detection in the post-processing stage. The researchers mainly monitor the quality of the forming process by molten pool signal, temperature signal, sound signal, and scanning track. The forming process is monitored using coaxial detection or paraxial detection through a high-speed camera, pyrometer, and other equipment. This paper can provide theoretical support for the SLM intelligent monitoring field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Gunasekaran J, Sevvel P, John Solomon I (2020) Metallic materials fabrication by selective laser melting: a review. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.05.162

  2. Zhang C, Zhu J, Zheng H, Li H, Liu S, Cheng GJ (2020) A review on microstructures and properties of high entropy alloys manufactured by selective laser melting. Int J Extreme Manuf 2:32003. https://doi.org/10.1088/2631-7990/ab9ead

    Article  Google Scholar 

  3. Craeghs T, Bechmann F, Berumen S, Kruth JP (2010) Feedback control of layerwise laser melting using optical sensors. Phys Procedia 5:505–514. https://doi.org/10.1016/j.phpro.2010.08.078

    Article  Google Scholar 

  4. Everton SK, Hirsch M, Stravroulakis P, Leach RK, Clare AT (2016) Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater Des 95:431–445. https://doi.org/10.1016/j.matdes.2016.01.099

    Article  Google Scholar 

  5. Grasso M, Demir AG, Previtali B, Colosimo BM (2018) In situ monitoring of selective laser melting of zinc powder via infrared imaging of the process plume. Robot Comput Integr Manuf 49:229–239. https://doi.org/10.1016/j.rcim.2017.07.001

    Article  Google Scholar 

  6. Gusarov AV, Smurov I (2009) Two-dimensional numerical modelling of radiation transfer in powder beds at selective laser melting. Appl Surf Sci 255:5595–5599. https://doi.org/10.1016/j.apsusc.2008.07.202

    Article  Google Scholar 

  7. Shiomi M, Osakada K, Nakamura K, Yamashita T, Abe F (2004) Residual stress within metallic model made by selective laser melting process. CIRP Ann 53:195–198. https://doi.org/10.1016/S0007-8506(07)60677-5

    Article  Google Scholar 

  8. Spears TG, Gold SA (2016) In-process sensing in selective laser melting (SLM) additive manufacturing. Integr Mater Manuf Innov 5:16–40. https://doi.org/10.1186/s40192-016-0045-4

    Article  Google Scholar 

  9. Van EM (2007) Complexity of selective laser melting: a new optimisation approach. Dissertation, Katholieke Universiteit Leuven. https://limo.libis.be/primoexplore/fulldisplay?docid=LIRIAS1746431&context=L&vid=Lirias&search_scope=Lirias&tab=default_tab&lang=en_US. Accessed 10 Oct 2020

  10. Thijs L, Verhaeghe F, Craeghs T, Humbeeck JV, Kruth JP (2010) A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater 58:3303–3312. https://doi.org/10.1016/j.actamat.2010.02.004

    Article  Google Scholar 

  11. Grasso M, Colosimo B (2017) Process defects and in-situ monitoring methods in metal powder bed fusion: a review. Meas Sci Technol 28:1–25. https://doi.org/10.1088/1361-6501/aa5c4f

    Article  Google Scholar 

  12. Yang J, Han J, Yu H, Yin JGM, Wang Z, Zeng X (2016) Role of molten pool mode on formability, microstructure and mechanical properties of selective laser melted Ti-6Al-4V alloy. Mater Des 110:558–570. https://doi.org/10.1016/j.matdes.2016.08.036

    Article  Google Scholar 

  13. Khairallah SA, Anderson AT, Rubenchik A, King WE (2016) Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 108:36–45. https://doi.org/10.1016/j.actamat.2016.02.014

    Article  Google Scholar 

  14. Criales LE, Arısoy YM, Lane B, Moylan S, Donmez A, Özel T (2017) Laser powder bed fusion of nickel alloy 625: experimental investigations of effects of process parameters on melt pool size and shape with spatter analysis. Int J Mach Tools Manuf. 121:22–36. https://doi.org/10.1016/j.ijmachtools.2017.03.004

  15. Foster B, Reutzel E, Nassar A, Hall B, Brown S, Dickman C (2015) 2015 Annual Solid Freeform Fabrication, Austin. In: University of Texas at Austin, pp 295–307. View Record in Scopus (https://www.scopus.com/record/display.uri?eid=2-s2.0-84981188889&origin=inward&txGid=9ac2b1abe9d6a36a40df1464e086c7b2) Google Scholar (https://scholar.google.com/scholar_lookup?title=Optical%2C%20layerwise%20monitoring%20of%20powder%20bed%20fusion&publication_year=2015&author=B.K.%20Foster&author=E.W.%20Reutzel&author=A.R.%20Nassar&author=B.T.%20Hall&author=S.W.%20Brown&author=C.J.%20Dickman. Accessed 10 Oct 2020

  16. Mani M, Donmez M, Feng S, Moylan S, Fesperman R, Lane B (2015) Measurement science needs for real-time control of additive manufacturing powder bed fusion processes. https://doi.org/10.6028/NIST.IR.8036

  17. Gibson BT, Bandari YK, Richardson BS, Henry WC, Vetland EJ, Sundermann TW, Love LJ (2020) Melt pool size control through multiple closed-loop modalities in laser-wire directed energy deposition of Ti-6Al-4V. Addit Manuf 32:100993. https://doi.org/10.1016/j.addma.2019.100993

    Article  Google Scholar 

  18. Gibson B, Bandari YK, Richardson B, Roschli A, Post B, Borish M, Thornton AS, Henry WC, Lamsey MD, Love L (2019) Melt pool monitoring for control and data analytics in large-scale metal additive manufacturing. United States. https://www.osti.gov/biblio/1561633. Accessed 10 Oct 2020

  19. Nassar AR, Reutzel EW, Brown SW Jr, John PM, Morgan JP, Natale DJ, Tutwiler RL, Feck DP, Banks JC (2016) Sensing for directed energy deposition and powder bed fusion additive manufacturing at Penn State University. In: Proc.SPIE. https://doi.org/10.1117/12.2217855

    Chapter  Google Scholar 

  20. Rodriguez E, Medina F, Espalin D, Terrazas C, Muse D, Henry C, Macdonald E, Wicker RB (2012) Integration of a thermal imaging feedback control system in electron beam melting. In: 23rd Annu Int Solid Free Fabr Symp - An Addit Manuf Conf SFF 2012, pp 945–961

    Google Scholar 

  21. Chivel Y, Smurov I (2010) On-line temperature monitoring in selective laser sintering/melting. Phys Procedia 5:515–521. https://doi.org/10.1016/j.phpro.2010.08.079

    Article  Google Scholar 

  22. Pavlov M, Doubenskaia M, Smurov I (2010) Pyrometric analysis of thermal processes in SLM technology. Phys Procedia 5:523–531. https://doi.org/10.1016/j.phpro.2010.08.080

    Article  Google Scholar 

  23. Doubenskaia M, Pavlov M, Chivel Y (2010) Optical system for on-line monitoring and temperature control in selective laser melting technology. Key Eng Mater 437:458–461. https://doi.org/10.4028/www.scientific.net/KEM.437.458

    Article  Google Scholar 

  24. Doubenskaia M, Pavlov M, Grigoriev S, Tikhonova E, Smurov I (2012) Comprehensive optical monitoring of selective laser melting. J Laser Micro / Nanoeng 7:236–243. https://doi.org/10.2961/j1mn.2012.03.001

    Article  Google Scholar 

  25. Berumen S, Bechmann F, Lindner S, Kruth JP, Tom C (2010) Quality control of laser-and powder bed-based additive manufacturing (AM) technologies. Phys Procedia 5:617–622. https://doi.org/10.1016/j.phpro.2010.08.089

    Article  Google Scholar 

  26. Clijsters S, Craeghs T, Buls S, Kempen K, Kruth JP (2014) In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system. Int J Adv Manuf Technol 75:1089–1101. https://doi.org/10.1007/s00170-014-6214-8

    Article  Google Scholar 

  27. Craeghs T, Clijsters S, Yasa E, Bechmann F, Berumen S, Kruth JP (2011) Determination of geometrical factors in l.ayerwise laser melting using optical process monitoring. Opt Lasers Eng 49:1440–1446. https://doi.org/10.1016/j.optlaseng.2011.06.016

    Article  Google Scholar 

  28. Craeghs T, Clijsters S, Kruth JP, Bechmann F, Ebert MC (2012) Detection of process failures in layerwise laser melting with optical process monitoring. Phys Procedia 39:753–759. https://doi.org/10.1016/j.phpro.2012.10.097

    Article  Google Scholar 

  29. Yadroitsev I, Krakhmalev P, Yadroitsava I (2014) Selective laser melting of Ti6Al4V alloy for biomedical applications: temperature monitoring and microstructural evolution. J Alloys Compd 583:404–409. https://doi.org/10.1016/j.jallcom.2013.08.183

    Article  Google Scholar 

  30. Lott P, Schleifenbaum H, Meiners W, Wissenbach K, Hinke C, Bültmann J (2011) Design of an optical system for the in situ process monitoring of selective laser melting (SLM). Phys Procedia 12:683–690. https://doi.org/10.1016/j.phpro.2011.03.085

    Article  Google Scholar 

  31. Thombansen U, Gatej A, Pereira M (2014) Process observation in fiber laser–based selective laser melting. Opt Eng 54:11008. https://doi.org/10.1117/1.OE.54.1.011008

    Article  Google Scholar 

  32. Fercher AF, Drexler W, Hitzenberger CK, Lasser T (2003) Optical coherence tomography - principles and applications. Rep Prog Phys 66:239–303. https://doi.org/10.1088/0034-4885/66/2/204

    Article  Google Scholar 

  33. Kanko JA, Sibley AP, Fraser JM (2016) In situ morphology-based defect detection of selective laser melting through inline coherent imaging. J Mater Process Technol 231:488–500. https://doi.org/10.1016/j.jmatprotec.2015.12.024

    Article  Google Scholar 

  34. Neef A, Seyda V, Herzog D, Emmelmann C, Schönleber M, Kogel-Hollacher M (2014) Low coherence interferometry in selective laser melting. Phys Procedia 56:82–89. https://doi.org/10.1016/j.phpro.2014.08.100

    Article  Google Scholar 

  35. Krauss H, Eschey C, Zaeh MF (2012) Thermography for monitoring the selective laser melting process. In: 23rd International Solid Freeform Fabrication Symposium; Austin, TX. https://api.semanticscholar.org/CorpusID:201858857. Accessed 10 Oct 2020. Google Scholar (https://scholar.google.com/scholar_lookup?title=Thermography%20for%20monitoring%20the%20selective%20laser%20melting%20process&publication_year=2012&author=H.%20Krauss&author=C.%20Eschey&author=M.F.%20Zaeh)

  36. Kleszczynski S, Zur Jacobsmühlen J, Sehrt JT, Witt G (2012) Error detection in laser beam melting systems by high resolution imaging. In: 23rd Annu. Int. Solid Free. Fabr. Symp. University of Texas at Austin, Austin, pp 975–987. Google Scholar (https://scholar.google.com/scholar?hl=zh-CN&as_sdt=2005&sciodt=0%2C5&cites=3082008579271783940&scipsc=&q=Error+detection+in+laser+beam+melting+systems+by+high+resolution+imaging&btnG=)

  37. Jacobsmühlen JZ, Kleszczynski S, Schneider D, Witt G (2013) High resolution imaging for inspection of laser beam melting systems. In: 2013 IEEE international instrumentation and measurement technology conference (I2MTC), 6–9 May 2013 (pp 707–712). https://doi.org/10.1109/I2MTC.2013.6555507. Google Scholar (https://hk7096.scholar.eu.org/scholar?hl=zh-CN&as_sdt=0%2C5&q=High+resolution+imaging+for+inspection+of+laser+beam+melting+systems&btnG=)

  38. Jacobsmühlen JZ, Kleszczynski S, Witt G, Merhof D (2015) Elevated region area measurement for quantitative analysis of laser beam melting process stability. In: 26th International solid freeform fabrication symposium, Austin, TX. Google Scholar (https://xueshu.lanfanshu.cn/scholar?hl=zh-CN&as_sdt=2005&sciodt=0%2C5&scipsc=&q=Elevated+Region+Area+Measurement+for+Quantitative+Analysis+of+Laser+Beam+Melting+Process+Stability&btnG=)

  39. Jacobsmühlen JZ, Kleszczynski S, Witt G, Merhof D (2015) Detection of elevated regions in surface images from laser beam melting processes. In: 41st Annual conference of the IEEE Industrial Electronics Society. Google Scholar (https://hk7096.scholar.eu.org/scholar?hl=zh-CN&as_sdt=0%2C5&q=Detection+of+elevated+regions+in+surface+images+from+laser+beam+melting+processes&btnG=)

  40. Hirvimäki M, Manninen M, Lehti A, Happonen A, Salminen A, Nyrhilä O (2013) Evaluation of different monitoring methods of laser additive manufacturing of stainless steel. Adv Mater Res 651:812–819. https://doi.org/10.4028/www.scientific.net/AMR.651.812

    Article  Google Scholar 

  41. Zhao C, Fezzaa K, Cunningham RW, Wen H, Carlo FD, Chen L, Rollett AD, Sun T (2017) Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction. Sci Rep 7:1–11. https://doi.org/10.1038/s41598-017-03761-2

  42. Craeghs T, Clijsters S, Yasa E, Kruth J-P (2011) Online quality control of selective laser melting. In: 22nd Annu. Int. Solid Free. Fabr. Symp. - An Addit. Manuf. Conf. SFF 2011. University of Texas at Austin (freeform), Austin, pp 212–226. Google Scholar (https://xueshu.lanfanshu.cn/scholar?hl=zh-CN&as_sdt=2005&sciodt=0%2C5&scipsc=&q=Online+quality+control+of+selective+laser+melting&btnG=). Accessed 10 Oct 2020

  43. Bayle F, Doubenskaia M (2008) Selective laser melting process monitoring with high speed infra-red camera and pyrometer - art. no. 698505. In: Proc SPIE, vol 6985. https://doi.org/10.1117/12.786940

    Chapter  Google Scholar 

  44. Repossini G, Laguzza V, Grasso M, Colosimo BM (2017) On the use of spatter signature for in-situ monitoring of laser powder bed fusion. Addit Manuf 16:35–48. https://doi.org/10.1016/j.addma.2017.05.004

    Article  Google Scholar 

  45. Furumoto T, Alkahari MR, Ueda T, Aziz MSA, Hosokawa A (2012) Monitoring of laser consolidation process of metal powder with high speed video camera. Phys Procedia 39:760–766. https://doi.org/10.1016/j.phpro.2012.10.098

    Article  Google Scholar 

  46. Islam M, Purtonen T, Piili H, Salminen A, Nyrhilä O (2013) Temperature profile and imaging analysis of laser additive manufacturing of stainless steel. Phys Procedia 41:835–842. https://doi.org/10.1016/j.phpro.2013.03.156

    Article  Google Scholar 

  47. Kruth JP, Froyen L, Van Vaerenbergh J, Mercelis P, Rombouts M, Lauwers B (2004) Selective laser melting of iron-based powder. J Mater Process Technol 149:616–622. https://doi.org/10.1016/j.jmatprotec.2003.11.051

    Article  Google Scholar 

  48. Krauss H, Zeugner T, Zaeh MF (2014) Layerwise monitoring of the selective laser melting process by thermography. Phys Procedia 56:64–71. https://doi.org/10.1016/j.phpro.2014.08.097

    Article  Google Scholar 

  49. Krauss H, Zeugner T, Zaeh M (2015) Thermographic process monitoring in powderbed based additive manufacturing. AIP Conf Proc 1650:177–183. https://doi.org/10.1063/1.4914608

    Article  Google Scholar 

  50. Abdelrahman M, Reutzel EW, Nassar AR, Starr TL (2017) Flaw detection in powder bed fusion using optical imaging. Addit Manuf 15:1–11. https://doi.org/10.1016/j.addma.2017.02.001

    Article  Google Scholar 

  51. Ye DS, Hong GS, Zhang YJ, Zhu KP, Fuh JYH (2018) Defect detection in selective laser melting technology by acoustic signals with deep belief networks. Int J Adv Manuf Technol 96:2791–2801. https://doi.org/10.1007/s00170-018-1728-0

    Article  Google Scholar 

  52. Leung CLA, Marussi S, Atwood RC, Towrie M, Withers PJ, Lee PD (2018) In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing. Nat Commun 9:1355. https://doi.org/10.1038/s41467-018-03734-7

    Article  Google Scholar 

  53. Boaretto N, Centeno TM (2017) Automated detection of welding defects in pipelines from radiographic images DWDI. NDT E Int 86:7–13. https://doi.org/10.1016/j.ndteint.2016.11.003

    Article  Google Scholar 

  54. Yuan B, Giera B, Guss G, Matthews M, McMains S, (2019) Semi-supervised convolutional neural networks for in-situ video monitoring of selective laser melting. 2019 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 2019. https://doi.org/10.1109/WACV.2019.00084

  55. Scime L, Beuth J (2018) Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm. Addit Manuf 19:114–126. https://doi.org/10.1016/j.addma.2017.11.009

    Article  Google Scholar 

  56. Scime L, Beuth J (2018) A multi-scale convolutional neural network for autonomous anomaly detection and classification in a laser powder bed fusion additive manufacturing process. Addit Manuf 24:273–286. https://doi.org/10.1016/j.addma.2018.09.034

    Article  Google Scholar 

  57. Hoffman J, Szyma ski Z (2004) Time-dependent spectroscopy of plasma plume under laser welding conditions. J Phys D Appl Phys 37:1792–1799. https://doi.org/10.1088/0022-3727/37/13/010

    Article  Google Scholar 

  58. Wang D, Wu S, Fu F, Mai S, Yang Y, Liu Y, Song C (2017) Mechanisms and characteristics of spatter generation in SLM processing and its effect on the properties. Mater Des 117:121–130. https://doi.org/10.1016/j.matdes.2016.12.060

    Article  Google Scholar 

  59. Grasso M, Colosimo BM (2019) A statistical learning method for image-based monitoring of the plume signature in laser powder bed fusion. Robot Comput Integr Manuf 57:103–115. https://doi.org/10.1016/j.rcim.2018.11.007

    Article  Google Scholar 

  60. Yang D, Li H, Liu S, Song C, Yang Y, Shen S, Lu J, Liu Z, Zhu Y (2020) In situ capture of spatter signature of SLM process using maximum entropy double threshold image processing method based on genetic algorithm. Opt Laser Technol 131:106371. https://doi.org/10.1016/j.optlastec.2020.106371

    Article  Google Scholar 

  61. Kwon O, Kim HG, Ham MJ, Kim W, Kim GH, Cho JH, Kim NI, Kim K (2020) A deep neural network for classification of melt-pool images in metal additive manufacturing. J Intell Manuf 31:375–386. https://doi.org/10.1007/s10845-018-1451-6

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants 51875010 and 51875005 from the National Natural Science Foundation of China. The authors gratefully acknowledge their financial support.

Funding

This research was funded by the National Natural Science Foundation of China Grant Number 51875010 and 51875005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongju Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Wang, P., Pan, R. et al. Research on in situ monitoring of selective laser melting: a state of the art review. Int J Adv Manuf Technol 113, 3121–3138 (2021). https://doi.org/10.1007/s00170-020-06432-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-06432-1

Keywords

Navigation