Single toroidal roller burnishing of 2024-T3 Al alloy implemented as mixed burnishing process

Abstract

Based on a comprehensive experimental study, single toroidal roller burnishing (STRB) of the 2024-T3 Al alloy can be successfully implemented as a mixed burnishing process. Optimum values of various governing factors provided minimum roughness and significant enhancement of the fatigue life of the treated specimens. With a planned experiment, regression analysis, and optimization procedure based on a genetic algorithm, the optimum factor values were established under a minimum roughness criterion. The derived model predicted a minimum roughness Ra = 0.074 μm. The experiment with optimal process parameters provided an average roughness (Ra) of 0.01 μm. STRB under these optimal conditions yields a relatively homogeneous surface in terms of microhardness with a surface microhardness increase coefficient of 37.6%. The parametric study of the residual surface hoop and axial stresses conducted via X-ray stress analysis shows that the STRB with near-optimal process parameters introduces significant residual stresses. STRB of the 2024-T3 Al alloy, implemented as a mixed burnishing process, produces a mirror-finish surface, improves the fatigue life by more than 2000 times, and increases the conventional fatigue limit by 35.1% compared to the reference condition.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9.
Fig. 10
Fig. 11
Fig. 12

Abbreviations

CNC:

Computer numerical control

HBB:

Hydrostatic ball burnishing

LPB:

Low plasticity burnishing

MST:

Mechanical surface treatment

SRB:

Single roller burnishing

STRB:

Single toroidal roller burnishing

A 5 :

Elongation

D :

External diameter of the toroidal deforming roller

d :

Workpiece (specimen) diameter

f :

Feed rate

F b :

Burnishing force

k HV :

Surface microhardness increase coefficient

n :

Number of passes

N :

Number of cycles to failure

r :

Radius of the toroid of the toroidal deforming roller

R :

Cycle asymmetry coefficient

R a :

Surface roughness

s i :

X-ray elastic constant

v :

Burnishing velocity

x i :

Coded variables

\( {\tilde{x}}_i \) :

Natural variables

Y Ra :

Objective function of the roughness

σ−1 :

Fatigue limit for symmetrical cycle

σ u :

Ultimate stress

σ Y :

Yield limit

\( {\sigma}_t^{res} \) :

Residual hoop stress

\( {\sigma}_z^{res} \) :

Residual axial stress

ψ :

Transverse contraction

References

  1. 1.

    Maximov JT, Duncheva GV, Anchev AP, Ichkova MD (2019) Slide burnishing—review and prospects. Int J Adv Manuf Technol 104:785–801

    Article  Google Scholar 

  2. 2.

    Ecoroll Catalogue Tools and solutions for metal surface improvement (2006) Ecoroll Corporation Tool Technology USA

  3. 3.

    Abrão AM, Denkena B, Köhler J, Breidenstein B, Mörke T (2014) The influence of deep rolling on the surface integrity of AISI 1060 high carbon steel. Proc CIRP 13:31–36

    Article  Google Scholar 

  4. 4.

    Abrão AM, Denkena B, Köhler J, Breidenstein B, Mörke T (2015) The inducement of residual stress through deep rolling of AISI 1060 steel and its subsequent relaxation under cyclic loading. Int J Adv Manuf Technol 79(9-12):1939–1947

    Article  Google Scholar 

  5. 5.

    Zhang P, Lindemann J, Ding WJ, Leyens C (2010) Effect of roller burnishing on fatigue properties of the hot-rolled Mg–12Gd–3Y magnesium alloy. Mater Chem Phys 124:835–840

    Article  Google Scholar 

  6. 6.

    Fouad Y, Mhaede M, Wagner L (2010) Effect of mechanical surface treatment on fatigue performance of extruded ZK60 alloy. Fatigue Fract Eng Mater Struct 34:403–407

    Article  Google Scholar 

  7. 7.

    Wagner L, Mhaede M, Wollmann M, Altenberger I, Sano Y (2011) Surface layer properties and fatigue behavior in Al 7075-T73 and Ti-6Al-4V. Comparing results after laser peening; shot peening and ball-burnishing. Int J Str Integr 2(2):185–199

    Article  Google Scholar 

  8. 8.

    Gomez-Gras G, Travieso-Rodriguez JA, Jerez-Mesa R (2015) Experimental characterization of the influence of lateral pass width on results of a ball burnishing operation. Proc Eng 132:686–692

    Article  Google Scholar 

  9. 9.

    Chomienne V, Valiorgue F, Rech J, Verdu C (2016) Influence of ball burnishing on residual stress profile of a 15-5PH stainless steel. CIRP J Manuf Sci Technol 13:90–96

    Article  Google Scholar 

  10. 10.

    Lindemann J, Glavatskikh M, Leyensl C, Oehring M, Appel F (2007) Influence of mechanical surface treatments on the high cycle fatigue performance of gamma titanium aluminides Ti-2007. Science and Technology, The Japan Institute of Metals 1703-1706

  11. 11.

    López de Lacalle LN, Lamikiz A, Sánchez JA, Arana JL (2007) The effect of ball burnishing on heat-treated steel and Inconel 718 milled surfaces. Int J Adv Manuf Technol 32:958–968

    Article  Google Scholar 

  12. 12.

    Yuan X, Sun Y, Li C, Liu W (2017) Experimental investigation into the effect of low plasticity burnishing parameters on the surface integrity of TA2. Int J Adv Manuf Technol 88:1089–1099

    Article  Google Scholar 

  13. 13.

    Frihat MH, Al Quran FMF, Al-Odat MQ (2016) Experimental Investigation of the Influence of Burnishing Parameters on Surface Roughness and Hardness of Brass Alloy. J Mater Sci Eng 5(1):1–4

    Google Scholar 

  14. 14.

    Malleswara Rao JN, Chenna Kesava RA, Kama KPV (2011) The effect of roller burnishing on surface hardness and surface roughnes on mild steel specimens. Int J Appl Eng Res 4:777–785

    Google Scholar 

  15. 15.

    Kurkute V, Chavan ST (2018) Modeling and optimization of surface roughness and microhardness for roller burnishing process using response surface methodology for aluminum alloy 63400. Proc Manuf 20:542–547

    Google Scholar 

  16. 16.

    Kiran AP, Pragnesh KB (2015) Surface roughness prediction for roller burnishing of 6061Al alloy using response surface method. Int J Sci Eng Res 6(3):636–640

    Google Scholar 

  17. 17.

    Othman OA, Basha M, Wagner L (2016) Optimizing the process parameters and investigating the influence of shot peening and roller burnishing on surface layer properties and fatigue performance of AI 6061 T4. Sohag J Sci 1(1):65–72

    Article  Google Scholar 

  18. 18.

    Hemanth S, Harish A, Nithin Bharadwaj R, Abhishek BB (2018) Design of roller burnishing tool and its effect on the surface integrity of Al 6061. Mater Today: Proc 5:12848–12854

    Google Scholar 

  19. 19.

    Shankar E, Balasivanandha Prabu S, Sampath Kumar T, Stalin John MR (2018) Investigation of TiAlN coated roller burnishing on Al-(B4C)p MMC workpiece material. Mater Manuf Process 33(11):1242–1249

    Article  Google Scholar 

  20. 20.

    Al-Qawabena UF, Al-Qawabah SM (2013) Effect of roller burnishing on pure aluminum alloyed by copper. Industr Lubric Tribol 65(2):71–77

    Article  Google Scholar 

  21. 21.

    Tian Y, Shin YC (2007) Laser-assisted burnishing of metals. Int J Mach Tool Manuf 47:14–22

    Article  Google Scholar 

  22. 22.

    Borkar AP, Kamble PS, Seemikeri CY (2014) Surface integrity enhancement of inconel 718 by using roller burnishing process. Int J Curr Eng Technol 4(4):2595–2598

    Google Scholar 

  23. 23.

    Hassani-Gangaraj S, Carboni M, Gnagliano M (2015) Finite element approach toward an advanced understanding of deep rolling induced residual stresses, and an application to railway axles. Mater Des 83:689–703

    Article  Google Scholar 

  24. 24.

    Dwivedi SP, Sharma S, Mishra RK (2014) Effects of roller burnishing process parameters on surface roughness of A356/5%SiC composite using response surface methodology. Adv Manuf 2:303–317

    Article  Google Scholar 

  25. 25.

    Perenda J, Trajkovski J, Zerovnik A, Prebil I (2015) Residual stresses after deep rolling of a torsion bar made from high strength steel. J Mater Process Technol 218:89–98

    Article  Google Scholar 

  26. 26.

    Duncheva GV, Atanasov TP (2020) Finite element modeling and optimization of the deep rolling process with a torodal roller in aluminum alloy 2024 T3. J Tech Univ Gabrovo 60:3–14

    Google Scholar 

  27. 27.

    Vuchkov IN, Vuchkov II (2009) QStatLab Professional, v. 5.5 – statistical quality control software. User’s Manual Sofia

Download references

Funding

This work was supported by the European Regional Development Fund within the OP “Science and Education for Smart Growth 2014-2020,” Project CoC “Smart Mechatronics, Eco- and Energy Saving Systems and Technologies,” no. BG05М2ОР001-1.002-0023.

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. V. Duncheva.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duncheva, G.V., Maximov, J.T., Dunchev, V.P. et al. Single toroidal roller burnishing of 2024-T3 Al alloy implemented as mixed burnishing process. Int J Adv Manuf Technol 111, 3559–3570 (2020). https://doi.org/10.1007/s00170-020-06350-2

Download citation

Keywords

  • 2024-T3 Al alloy
  • Single toroidal roller burnishing
  • Roughness
  • Microhardness
  • Residual stresses
  • Fatigue life enhancement