Skip to main content
Log in

Surface modification of tungsten carbide cobalt by electrical discharge coating with quarry dust suspension

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This study explores the feasibility of reusing waste quarry dust as a coating material for surface modification of tungsten carbide cobalt (WC-Co) using electrical discharge coating (EDC). The main objective is to investigate the effect of quarry dust suspension with different concentrations (0–40 g/l) on the characteristics of coated surface such as coating layer thickness, coating element composition and chemical compound, surface morphology, surface roughness and Vickers micro-hardness. Before the EDC process, characterisation of the raw quarry dust was conducted through scanning electron microscopy, X-ray fluorescence and particle size analyser. The results showed that the coating layer thickness was strongly affected by the quarry dust concentration. The formation of hard carbides (SiC, Mg2C3, Fe2C and CaC2) and oxide phases (SiO2, Al2O3, Fe2O3, CaO, CoO and ZnO) in the coated layer due to material migration was confirmed through X-ray diffraction analysis. Vickers micro-hardness of the coated surface was improved significantly with the addition of quarry dust. The best surface finish without micropores and microcracks was obtained using a quarry dust concentration of 10 g/l. These results demonstrated the capability of recycling quarry dust as an environmentally friendly coating material for surface modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sridharan A, Soosan TG, Jose BT, Abraham BM (2006) Shear strength studies on soil-quarry dust mixtures. Geotech Geol Eng 24:1163–1179. https://doi.org/10.1007/s10706-005-1216-9

    Article  Google Scholar 

  2. Ramesh M, Karthikeyan T, Kumaravel A, Kumaari C (2014) The effects of applied load on wear behavior of Al-quarry dust particle composite disc sliding against automobile brake material. Appl Mech Mater 592–594:1357–1361. https://doi.org/10.4028/www.scientific.net/AMM.592-594.1357

    Article  Google Scholar 

  3. Xavier LF, Suresh P (2016) Wear behavior of aluminium metal matrix composite prepared from industrial waste. Sci World J 2016:1–8. https://doi.org/10.1155/2016/6538345

    Article  Google Scholar 

  4. dos Santos SC, Antunes MLP, Valentina LVOD, Rangel EC, da Cruz NC (2019) Use of waste foundry sand (WFS) to produce protective coatings on aluminum alloy by plasma electrolytic oxidation. J Clean Prod 222:584–592. https://doi.org/10.1016/j.jclepro.2019.03.013

    Article  Google Scholar 

  5. Talib RJ, Saad S, Toff MRM, Hashim H (2003) Thermal spray coating technology – a review. Solid State Sci Technol 11:109–117. http://journal.masshp.net/wp-content/uploads/Journal/2003/R.J.Talib109-117.pdf

  6. Bayón R, Igartua A, Fernández X, Martínez R, Rodríguez RJ, García JA, de Frutos A, Arenas MA, de Damborenea J (2009) Corrosion-wear behaviour of PVD Cr/CrN multilayer coatings for gear applications. Tribol Int 42:591–599. https://doi.org/10.1016/j.triboint.2008.06.015

    Article  Google Scholar 

  7. Carlsson JO, Martin PM (2010) Chemical vapor deposition. In: Martin PM (ed) Handbook of deposition technologies for films and coatings, 3rd edn. Elsevier, Amsterdam, pp 314–363

    Chapter  Google Scholar 

  8. Nguyen TD, Nguyen PH, Banh LT (2019) Die steel surface layer quality improvement in titanium μ-powder mixed die sinking electrical discharge machining. Int J Adv Manuf Technol 100:2637–2651. https://doi.org/10.1007/s00170-018-2887-8

    Article  Google Scholar 

  9. Chen YF, Chow HM, Lin YC, Lin CT (2008) Surface modification using semi-sintered electrodes on electrical discharge machining. Int J Adv Manuf Technol 36:490–500. https://doi.org/10.1007/s00170-006-0859-x

    Article  Google Scholar 

  10. Mussada EK, Patowari PK (2015) Investigation of EDC parameters using W and Cu powder metallurgical compact electrodes. Int J Mach Mach Mater 17:65. https://doi.org/10.1504/IJMMM.2015.069230

    Article  Google Scholar 

  11. Liew PJ, Yap CY, Nurlishafiqa Z, Othman IS, Chang SY, Toibah AR, Wang J (2018) Material deposition on aluminium by electrical discharge coating ( EDC ) with a tungsten powder suspension. J Adv Manuf Technol 12:133–146. http://journal.utem.edu.my/index.php/jamt/article/view/4875

    Google Scholar 

  12. Banh TL, Nguyen HP, Ngo C, Nguyen DT (2018) Characteristics optimization of powder mixed electric discharge machining using titanium powder for die steel materials. Proc Inst Mech Eng Part E J Process Mech Eng 232:281–298. https://doi.org/10.1177/0954408917693661

    Article  Google Scholar 

  13. Nguyen HP, Pham VD, Ngo NV (2018) Application of TOPSIS to Taguchi method for multi-characteristic optimization of electrical discharge machining with titanium powder mixed into dielectric fluid. Int J Adv Manuf Technol 98:1179–1198. https://doi.org/10.1007/s00170-018-2321-2

    Article  Google Scholar 

  14. Chen SL, Lin MH, Huang GX, Wang CC (2014) Research of the recast layer on implant surface modified by micro-current electrical discharge machining using deionized water mixed with titanium powder as dielectric solvent. Appl Surf Sci 311:47–53. https://doi.org/10.1016/j.apsusc.2014.04.204

    Article  Google Scholar 

  15. Liew PJ, Yap CY, Wang J, Zhou T, Yan J (2020) Surface modification and functionalization by electrical discharge coating: a comprehensive review. Int J Extreme Manuf 2:012004. https://doi.org/10.1088/2631-7990/ab7332

    Article  Google Scholar 

  16. Long BT, Phan NH, Cuong N, Jatti VS (2016) Optimization of PMEDM process parameter for maximizing material removal rate by Taguchi’s method. Int J Adv Manuf Technol 87:1929–1939. https://doi.org/10.1007/s00170-016-8586-4

    Article  Google Scholar 

  17. Chakraborty S, Kar S, Ghosh SK, Dey V (2017) Parametric optimization of electric discharge coating on aluminium-6351 alloy with green compact silicon carbide and copper tool: a Taguchi coupled utility concept approach. Surf Interfaces 7:47–57. https://doi.org/10.1016/j.surfin.2017.02.001

    Article  Google Scholar 

  18. Krishna ME, Patowari PK (2013) Parametric optimisation of electric discharge coating process with powder metallurgy tools using Taguchi analysis. Surf Eng 29:703–711. https://doi.org/10.1179/1743294413Y.0000000207

    Article  Google Scholar 

  19. Das A, Misra JP (2012) Experimental investigation on surface modification of aluminum by electric discharge coating process using TiC/Cu green compact tool-electrode. Mach Sci Technol 16:601–623. https://doi.org/10.1080/10910344.2012.731951

    Article  Google Scholar 

  20. Gill AS, Kumar S (2016) Surface roughness and microhardness evaluation for EDM with Cu–Mn powder metallurgy tool. Mater Manuf Process 31:514–521. https://doi.org/10.1080/10426914.2015.1070412

    Article  Google Scholar 

  21. Bai CY, Koo CH (2006) Effects of kerosene or distilled water as dielectric on electrical discharge alloying of superalloy Haynes 230 with Al–Mo composite electrode. Surf Coat Technol 200:4127–4135. https://doi.org/10.1016/j.surfcoat.2005.03.022

    Article  Google Scholar 

  22. Vijayakumar S, Mohan N, Dineshbabu C, Karthikeyan G (2016) Reduce the mass losses for coated Al 7075 by using powder mixed electric discharge coating. Int J Mod Trends Eng Sci 3:184–186. http://ijmtes.com/archive/vol3issue7/vol3iss7p43

    Google Scholar 

  23. Janmanee P, Muttamara A (2012) Surface modification of tungsten carbide by electrical discharge coating (EDC) using a titanium powder suspension. Appl Surf Sci 258:7255–7265. https://doi.org/10.1016/j.apsusc.2012.03.054

    Article  Google Scholar 

  24. Kumar S, Batra U (2012) Surface modification of die steel materials by EDM method using tungsten powder-mixed dielectric. J Manuf Process 14:35–40. https://doi.org/10.1016/j.jmapro.2011.09.002

    Article  Google Scholar 

  25. Amorim FL, Dalcin VA, Soares P, Mendes LA (2017) Surface modification of tool steel by electrical discharge machining with molybdenum powder mixed in dielectric fluid. Int J Adv Manuf Technol 91:341–350. https://doi.org/10.1007/s00170-016-9678-x

    Article  Google Scholar 

  26. Sharma D, Mohanty S, Das AK (2020) Surface modification of titanium alloy using hBN powder mixed dielectric through micro-electric discharge machining. Surf Coat Technol 381:125157. https://doi.org/10.1016/j.surfcoat.2019.125157

    Article  Google Scholar 

  27. Prakash C, Kansal HK, Pabla BS, Puri S (2017) Experimental investigations in powder mixed electric discharge machining of Ti–35Nb–7Ta–5Zrβ-titanium alloy. Mater Manuf Process 32:274–285. https://doi.org/10.1080/10426914.2016.1198018

    Article  Google Scholar 

  28. Long BT, Phan NH, Cuong N, Toan ND (2016) Surface quality analysis of die steels in powder-mixed electrical discharge machining using titan powder in fine machining. Adv Mech Eng 8:168781401665773. https://doi.org/10.1177/1687814016657732

    Article  Google Scholar 

  29. Ekmekci B, Ulusöz F, Ekmekci N, Yaşar H (2015) Suspended SiC particle deposition on plastic mold steel surfaces in powder-mixed electrical discharge machining. Proc Inst Mech Eng B J Eng Manuf 229:475–486. https://doi.org/10.1177/0954405414530902

    Article  Google Scholar 

  30. Peças P, Henriques E (2008) Effect of the powder concentration and dielectric flow in the surface morphology in electrical discharge machining with powder-mixed dielectric (PMD-EDM). Int J Adv Manuf Technol 37:1120–1132. https://doi.org/10.1007/s00170-007-1061-5

    Article  Google Scholar 

  31. Tyagi R, Das AK, Mandal A (2018) Electrical discharge coating using WS2 and Cu powder mixture for solid lubrication and enhanced tribological performance. Tribol Int 120:80–92. https://doi.org/10.1016/j.triboint.2017.12.023

    Article  Google Scholar 

  32. Ansys Granta (2013) CES Edupack. https://grantadesign.com/education/ces-edupack/. Accessed 18 January 2020

  33. Dijen FK, Metselaar R (1991) The chemistry of the carbothermal synthesis of β-SiC: reaction mechanism, reaction rate and grain growth. J Eur Ceram Soc 7:177–184. https://doi.org/10.1016/0955-2219(91)90035-X

    Article  Google Scholar 

  34. Davis RF (2017) Silicon carbide. In: Reference module in materials science and materials engineering. Elsevier, pp 1–10. https://doi.org/10.1016/B978-0-12-803581-8.02445-0

  35. Ding LP, Shao P, Zhang FH, Huang XF, Yuan TL (2015) Structure, relative stabilities, physical properties, and hardness of osmium carbides with various stoichiometries: first-principle investigations. J Phys Chem C 119:21639–21648. https://doi.org/10.1021/acs.jpcc.5b06666

    Article  Google Scholar 

  36. Mohanty S, Kumar V, Kumar Das A, Dixit AR (2019) Surface modification of Ti-alloy by micro-electrical discharge process using tungsten disulphide powder suspension. J Manuf Process 37:28–41. https://doi.org/10.1016/j.jmapro.2018.11.007

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledged the financial and equipment support from the Ministry of Higher Education (MOHE) and Universiti Teknikal Malaysia Melaka (UTeM) though the PJP grant, PJP/2018/FKP(6A)/S01587.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pay Jun Liew.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yap, C.Y., Liew, P.J. & Yan, J. Surface modification of tungsten carbide cobalt by electrical discharge coating with quarry dust suspension. Int J Adv Manuf Technol 111, 2105–2116 (2020). https://doi.org/10.1007/s00170-020-06268-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-06268-9

Keywords

Navigation