Skip to main content

Advertisement

Log in

Influence of energy density on selective laser sintering of carbon fiber-reinforced PA12

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This work provides an in-depth investigation of the influence of laser energy density on the mechanical, surface, and dimensional properties of carbon fiber-reinforced PA12 parts manufactured by selective laser sintering (SLS). A space-filling design of experiments (DOE) was used to conduct the experimental trials to cover a wide range of laser sintering parameters. The consolidation mechanism was evaluated by microstructural and crystallization evolution of the samples produced at different energy densities, supported by mechanical testing, scanning electron microscopy (SEM), X-ray diffraction (XRD), and infrared spectroscopy (FTIR). Surface morphology was evaluated by profile measurements and SEM images. Laser sintering parameters had a significant influence on physical and mechanical properties, exhibiting complex and nonlinear behavior. Low energy density resulted in better dimensional accuracy, whereas intermediate laser energy resulted in the best mechanical properties. A trade-off could be seen when mechanical or dimensional properties were desired, and optimum energy values were strongly dependent on the criteria desired. All samples exhibited a brittle fracture behavior, with little plastic deformation present. Fracture mechanism occurred in the interlayer region or interface between carbon fiber and PA12, depending on the energy density applied. XRD analysis revealed a decrease in crystal fraction with increasing energy density. FTIR measurement suggested that polymer degradation at high energy densities could be present by both polymer chain scission and oxygen functional group decomposition and gas release upon laser heating of carbon fiber, resulting in lower mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Kruth JP, Wang X, Laoui T, Froyen L (2003) Lasers and materials in selective laser sintering. Assem Autom 23:357–371. https://doi.org/10.1108/01445150310698652

    Article  Google Scholar 

  2. ASTM Standard F2792-12a (2012) Standard terminology for additive manufacturing technologies. West Conshohocken, PA

    Google Scholar 

  3. Kruth J-P, Mercelis P, Vaerenbergh J van, Froyen L and Rombouts M (2005) Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J 11:26–36. https://doi.org/10.1108/13552540510573365

  4. Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017) 3D printing of polymer matrix composites: a review and prospective. Compos Part B 110:442–458. https://doi.org/10.1016/J.COMPOSITESB.2016.11.034

    Article  Google Scholar 

  5. Goodridge RD, Tuck CJ, Hague RJM (2012) Laser sintering of polyamides and other polymers. Prog Mater Sci 57:229–267. https://doi.org/10.1016/j.pmatsci.2011.04.001

    Article  Google Scholar 

  6. Kumar S, Kruth JP (2010) Composites by rapid prototyping technology. Mater Des 31:850–856. https://doi.org/10.1016/j.matdes.2009.07.045

    Article  Google Scholar 

  7. Parandoush P, Lin D (2017) A review on additive manufacturing of polymer-fiber composites. Compos Struct 182:36–53. https://doi.org/10.1016/J.COMPSTRUCT.2017.08.088

    Article  Google Scholar 

  8. Mazzoli A, Moriconi G, Pauri MG (2007) Characterization of an aluminum-filled polyamide powder for applications in selective laser sintering. Mater Des 28:993–1000. https://doi.org/10.1016/j.matdes.2005.11.021

    Article  Google Scholar 

  9. Hon KKB, Gill TJ (2003) Selective laser sintering of SiC/polyamide composites. CIRP Ann Manuf Technol 52:173–176. https://doi.org/10.1016/S0007-8506(07)60558-7

  10. Guo Y, Jiang K, Bourell DL (2014) Preparation and laser sintering of limestone PA 12 composite. Polym Test 37:210–215. https://doi.org/10.1016/j.polymertesting.2014.06.002

    Article  Google Scholar 

  11. Negi S, Dhiman S, Sharma RK (2015) Determining the effect of sintering conditions on mechanical properties of laser sintered glass filled polyamide parts using RSM. Measurement 68:205–218. https://doi.org/10.1016/j.measurement.2015.02.057

    Article  Google Scholar 

  12. Jain PK, Pandey PM, Rao PVM (2009) Selective laser sintering of clay-reinforced polyamide. Polym Compos 31:732–743. https://doi.org/10.1002/pc.20854

    Article  Google Scholar 

  13. Athreya SR, Kalaitzidou K, Das S (2010) Processing and characterization of a carbon black-filled electrically conductive Nylon-12 nanocomposite produced by selective laser sintering. Mater Sci Eng A 527:2637–2642. https://doi.org/10.1016/j.msea.2009.12.028

    Article  Google Scholar 

  14. Goodridge RD, Shofner ML, Hague RJM, McClelland M, Schlea MR, Johnson RB, Tuck CJ (2011) Processing of a polyamide-12/carbon nanofibre composite by laser sintering. Polym Test 30:94–100. https://doi.org/10.1016/j.polymertesting.2010.10.011

    Article  Google Scholar 

  15. Bai J, Goodridge RD, Hague RJM, Song M (2013) Improving the mechanical properties of laser-sintered polyamide 12 through incorporation of carbon nanotubes. Polym Eng Sci 53:1937–1946. https://doi.org/10.1002/pen.23459

    Article  Google Scholar 

  16. Salmoria GV, Paggi RA, Lago A, Beal VE (2011) Microstructural and mechanical characterization of PA12/MWCNTs nanocomposite manufactured by selective laser sintering. Polym Test 30:611–615. https://doi.org/10.1016/j.polymertesting.2011.04.007

    Article  Google Scholar 

  17. Yang J, Shi Y, Yan C (2010) Selective laser sintering of polyamide 12/potassium titanium whisker composites. J Appl Polym Sci 117:2196–2204. https://doi.org/10.1002/app.31965

    Article  Google Scholar 

  18. Yan C, Hao L, Xu L, Shi Y (2011) Preparation, characterisation and processing of carbon fibre/polyamide-12 composites for selective laser sintering. Compos Sci Technol 71:1834–1841. https://doi.org/10.1016/j.compscitech.2011.08.013

    Article  Google Scholar 

  19. Jing W, Hui C, Qiong W, Hongbo L, Zhanjun L (2017) Surface modification of carbon fibers and the selective laser sintering of modified carbon fiber/nylon 12 composite powder. Mater Des 116:253–260. https://doi.org/10.1016/j.matdes.2016.12.037

    Article  Google Scholar 

  20. Jansson A, Pejryd L (2016) Characterisation of carbon fibre-reinforced polyamide manufactured by selective laser sintering. Addit Manuf 9:7–13. https://doi.org/10.1016/j.addma.2015.12.003

    Article  Google Scholar 

  21. Liu Y, Zhu L, Zhou L, Li Y (2019) Microstructure and mechanical properties of reinforced polyamide 12 composites prepared by laser additive manufacturing. Rapid Prototyp J 25:1127–1134. https://doi.org/10.1108/RPJ-08-2018-0220

    Article  Google Scholar 

  22. EOS (2020) Material Data Center. http://eos.materialdatacenter.com/eo/en. Accessed 9 Jan 2020

  23. ASTM Standard D638-02a (2002) Standard test method for tensile properties of plastics. In: West Conshohocken

    Google Scholar 

  24. ASTM Standard D790-02 (2002) Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. West Conshohocken

  25. Cavazzuti M (2013) Optimization methods: from theory to design. Springer-Verlag, Berlin Heidelberg

    Book  Google Scholar 

  26. ASTM Standard D5947-11 (2012) Standard test methods for physical dimensions of solid plastics specimens

  27. Laumer T, Stichel T, Nagulin K, Schmidt M (2016) Optical analysis of polymer powder materials for selective laser sintering. Polym Test 56:207–213. https://doi.org/10.1016/j.polymertesting.2016.10.010

    Article  Google Scholar 

  28. Mattos NRD, Oliveira CRD, Camargo LGB, Silva RSRD, Lavall RL (2018) Azo dye adsorption on anthracite: a view of thermodynamics, kinetics and cosmotropic effects. Sep Purif Technol 209:806–814. https://doi.org/10.1016/j.seppur.2018.09.027

    Article  Google Scholar 

  29. Herrin JM, Deming D (1996) Thermal conductivity of U.S. coals. J Geophys Res Solid Earth 101:25381–25386. https://doi.org/10.1029/96jb01884

    Article  Google Scholar 

  30. Bai J, Goodridge RD, Yuan S, Zhou K, Chua CK, Wei J (2015) Thermal influence of CNT on the polyamide 12 nanocomposite for selective laser sintering. Molecules 20:19041–19050. https://doi.org/10.3390/molecules201019041

    Article  Google Scholar 

  31. Guo J, Bai J, Liu K, Wei J (2018) Surface quality improvement of selective laser sintered polyamide 12 by precision grinding and magnetic field-assisted finishing. Mater Des 138:39–45. https://doi.org/10.1016/j.matdes.2017.10.048

    Article  Google Scholar 

  32. Launhardt M, Wörz A, Loderer A, Laumer T, Drummer D, Hausotte T, Schmidt M (2016) Detecting surface roughness on SLS parts with various measuring techniques. Polym Test. https://doi.org/10.1016/j.polymertesting.2016.05.022

  33. Anestiev L, Froyen L (1999) Model of the primary rearrangement processes at liquid phase sintering and selective laser sintering due to biparticle interactions. J Appl Phys 86:4008. https://doi.org/10.1063/1.371321

    Article  Google Scholar 

  34. Kruth J-P, Levy G, Klocke F, Childs THC (2007) Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann Manuf Technol 56:730–759. https://doi.org/10.1016/j.cirp.2007.10.004

    Article  Google Scholar 

  35. Dupin S, Lame O, Barrès C, Charmeau J-YY (2012) Microstructural origin of physical and mechanical properties of polyamide 12 processed by laser sintering. Eur Polym J 48:1611–1621. https://doi.org/10.1016/j.eurpolymj.2012.06.007

    Article  Google Scholar 

  36. Jauffrès D, Lame O, Vigier G, Doré F, Douillard T (2009) Sintering mechanisms involved in high-velocity compaction of nascent semicrystalline polymer powders. Acta Mater 57:2550–2559. https://doi.org/10.1016/j.actamat.2009.02.012

    Article  Google Scholar 

  37. Atkins EDT, Hill MJJ, Veluraja K (1995) Structural and morphological investigations of nylon 8 chain-folded lamellar crystals. Polymer 36:35–42. https://doi.org/10.1016/0032-3861(95)90672-O

    Article  Google Scholar 

  38. Rhee S, White JL (2002) Crystal structure and morphology of biaxially oriented polyamide 12 films. J Polym Sci B Polym Phys 40:1189–1200. https://doi.org/10.1002/polb.10181

    Article  Google Scholar 

  39. Zhang J, Adams A (2016) Understanding thermal aging of non-stabilized and stabilized polyamide 12 using 1H solid-state NMR. Polym Degrad Stab 134:169–178. https://doi.org/10.1016/j.polymdegradstab.2016.10.006

    Article  Google Scholar 

  40. Celina M, Ottesen DK, Gillen KT, Clough RL (1997) FTIR emission spectroscopy applied to polymer degradation. Polym Degrad Stab 58:15–31. https://doi.org/10.1016/S0141-3910(96)00218-2

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Financiadora de Estudos e Projetos (FINEP) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred L. Amorim.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czelusniak, T., Amorim, F.L. Influence of energy density on selective laser sintering of carbon fiber-reinforced PA12. Int J Adv Manuf Technol 111, 2361–2376 (2020). https://doi.org/10.1007/s00170-020-06261-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-06261-2

Keywords

Navigation