Skip to main content

Using virtual manufacturing to design human-centric factories: an industrial case

Abstract

Virtual reality (VR) offers a promising set of technologies to digitally simulate industrial processes and interaction between humans and machines. However, the use of immersive VR simulations is still limited in industry due to the uncertainty of benefits in respect with traditional digital tools, and the lack of structured methodologies to effectively implement immersive virtual simulations in practice. This paper deals with the application of VR to create virtual manufacturing simulations with the aim to design assembly lines in compliance with factory ergonomics. It proposes a methodology to allow the virtualization and simulation of assembly tasks using a combination of VR tools by replicating, or rather anticipating, what would happen at the shop floor. The adopted tools are Unity 3D for virtual environment generation, HTC VIVE to immerse the user in the virtual factory layout, Xsens as tracking system, and Leap Motion for gesture recognition. The paper also compares the new VR-based procedure with a more traditional desktop-based digital simulation on industrial cases. Results show that the new methodology is more precise to detect the operator’s comfort angles and more powerful to predict process criticalities and optimize factory layout design. At the same time, it is less sensitive to errors during ergonomic assessment related to the expert’s subjectivity during the analysis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    GTAI (Germany Trade & Invest) (2014) Industries 4.0-smart manufacturing for the future. GTAI, Berlin. Available online at: https://www.manufacturing-policy.eng.cam.ac.uk/documents-folder/policies/germany-industrie-4-0-smart-manufacturing-for-the-future-gtai/view

  2. 2.

    ManpowerGroup (2019) Humans wanted: robots need you, the skills revolution. Available online at: https://www.manpowergroup.com/workforce-insights/world-of-work/skills-revolution-series

  3. 3.

    Grosse EH, Glock CH, Jaber MY, Neumann WP (2015) Incorporating human factors in order picking planning models: framework and research opportunities. Int J Prod Res 53:695–717. https://doi.org/10.1080/00207543.2014.919424

    Article  Google Scholar 

  4. 4.

    Jayaram S, Connacher HI, Lyons KW (1997) Virtual assembly using virtual reality techniques. CAD Comput Aided Des 29:575–584. https://doi.org/10.1016/S0010-4485(96)00094-2

    Article  Google Scholar 

  5. 5.

    Ŝtefánik IA, Gregor IM, Furmann IR, Ŝkorík IP (2008) Virtual manufacturing in research & industry. IFAC Proc 41:81–85. https://doi.org/10.3182/20081205-2-CL-4009.00016

    Article  Google Scholar 

  6. 6.

    Grandi F, Peruzzini M, Zanni L, Campanella CE, Pellicciari M (2018) Digital manufacturing and virtual reality for tractors’ human-centred design. In: Advances in Transdisciplinary Engineering. https://doi.org/10.3233/978-1-61499-898-3-702

    Chapter  Google Scholar 

  7. 7.

    Falck A-C, Örtengren R, Rosenqvist M (2014) Assembly failures and action cost in relation to complexity level and assembly ergonomics in manual assembly (part 2). Int J Ind Ergon 44:455–459. https://doi.org/10.1016/j.ergon.2014.02.001

    Article  Google Scholar 

  8. 8.

    Demirel HO, Duffy VG (2007) Applications of digital human modeling in industry. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 4561 LNCS:824–832 . https://doi.org/10.1007/978-3-540-73321-8_93

  9. 9.

    Cecil J, Kanchanapiboon A (2007) Virtual engineering approaches in product and process design. Int J Adv Manuf Technol 31:846–856. https://doi.org/10.1007/s00170-005-0267-7

    Article  Google Scholar 

  10. 10.

    Aromaa S, Väänänen K (2016) Suitability of virtual prototypes to support human factors/ergonomics evaluation during the design. Appl Ergon 56:11–18. https://doi.org/10.1016/j.apergo.2016.02.015

    Article  Google Scholar 

  11. 11.

    Peruzzini M, Grandi F, Pellicciari M, Campanella C (2017) Virtual maintenance simulation for socially sustainable serviceability. Procedia Manuf 11:1413–1420. https://doi.org/10.1016/j.promfg.2017.07.271

    Article  Google Scholar 

  12. 12.

    Dépincé P, Chablat D, Woelk PO (2004) Virtual manufacturing: tools for improving design and production. CIRP International Design Seminar, Caire, Egypt. p 1–12. hal-00166317

  13. 13.

    Farahani MH, Schaefer D, Hashemipour M (2011) Information requirements analysis for holonic manufacturing systems in a virtual environment. Int J Adv Manuf Technol 53:385–398. https://doi.org/10.1007/s00170-010-2822-0

    Article  Google Scholar 

  14. 14.

    Stadnicka D, Litwin P, Antonelli D (2019) Human factor in intelligent manufacturing systems - knowledge acquisition and motivation. Procedia CIRP 79:718–723. https://doi.org/10.1016/j.procir.2019.02.023

    Article  Google Scholar 

  15. 15.

    Grandi F, Peruzzini M, Zanni L, Pellicciari M (2019) An automatic procedure based on virtual ergonomic analysis to promote human-centric manufacturing promote human-centric manufacturing. Procedia Manuf 38:488–496. https://doi.org/10.3233/978-1-61499-898-3-702

    Article  Google Scholar 

  16. 16.

    Caputo F, Greco A, D’Amato E, Notaro I, Spada S (2018) On the use of virtual reality for a human-centered workplace design. Procedia Struct Integr 8:297–308. https://doi.org/10.1016/j.prostr.2017.12.031

    Article  Google Scholar 

  17. 17.

    Otto M, Lampen E, Agethen P, Langohr M, Zachmann G, Rukzio E (2019) A virtual reality assembly assessment benchmark for measuring VR performance & limitations. Procedia CIRP 81:785–790. https://doi.org/10.1016/j.procir.2019.03.195

    Article  Google Scholar 

  18. 18.

    Al-Ahmari AM, Abidi MH, Ahmad A, Darmoul S (2016) Development of a virtual manufacturing assembly simulation system. Adv Mech Eng 8:1–13. https://doi.org/10.1177/1687814016639824

    Article  Google Scholar 

  19. 19.

    Tang A, Owen C, Biocca F, Mou W (2003) Comparative effectiveness of augmented reality in object assembly. Conf Hum Factors Comput Syst - Proc:73–80. https://doi.org/10.1145/642625.642626

  20. 20.

    Boud AC, Haniff DJ, Baber C, Steiner SJ (1999) Virtual reality and augmented reality as a training tool for assembly tasks. In: 1999 IEEE International Conference on Information Visualization (Cat. No. PR00210), pp 32–36. https://doi.org/10.1109/IV.1999.781532

    Chapter  Google Scholar 

  21. 21.

    Grajewski D, Górski F, Zawadzki P, Hamrol A (2013) Application of virtual reality techniques in design of ergonomic manufacturing workplaces. Procedia Comput Sci 25:289–301. https://doi.org/10.1016/j.procs.2013.11.035

    Article  Google Scholar 

  22. 22.

    Peniche A, Diaz C, Trefftz H, Paramo G (2012) Combining virtual and augmented reality to improve the mechanical assembly training process in manufacturing. Proc 6th WSEAS Int Conf Comput Eng Appl Proc 2012 Am Conf Appl Math 292–297. World Scientific and Engineering Academy

  23. 23.

    Simões B, De Amicis R, Barandiaran I, Posada J (2019) Cross reality to enhance worker cognition in industrial assembly operations. Int J Adv Manuf Technol 3965–3978:3965–3978. https://doi.org/10.1007/s00170-019-03939-0

    Article  Google Scholar 

  24. 24.

    Numfu M, Riel A, Noel F (2019) Virtual reality based digital chain for maintenance training. Procedia CIRP 84:1069–1074. https://doi.org/10.1016/j.procir.2019.04.268

    Article  Google Scholar 

  25. 25.

    De Giorgio A, Romero M, Onori M, Wang L (2017) Human-machine collaboration in virtual reality for adaptive production engineering. Procedia Manuf 11:1279–1287. https://doi.org/10.1016/j.promfg.2017.07.255

    Article  Google Scholar 

  26. 26.

    Louison C, Ferlay F, Keller D, Mestre DR (2017) Operators’ accessibility studies for assembly and maintenance scenarios using virtual reality. Fusion Eng Des 124:610–614. https://doi.org/10.1016/j.fusengdes.2017.03.017

    Article  Google Scholar 

  27. 27.

    Turner CJ, Hutabarat W, Oyekan J, Tiwari A (2016) Discrete event simulation and virtual reality use in industry: new opportunities and future trends. IEEE Trans Hum Mach Syst 46:882–894. https://doi.org/10.1109/THMS.2016.2596099

    Article  Google Scholar 

  28. 28.

    Banks J (2005) Discrete event system simulation. Pearson Education India

  29. 29.

    Alves G, Roßmann J, Wischnewski R (2009) A discrete-event-simulation approach for logistic systems with real time resource routing and VR integration. World Acad Sci Eng Technol 58:821–826. https://doi.org/10.5281/zenodo.1061844

    Article  Google Scholar 

  30. 30.

    Högberg D, Bäckstrand G, Lämkull D, Vin LJ De (2007), Towards dynamic ergonomics analysis of work sequences in virtual environments. Proc 17th Int Conf flex autom Intell Manuf (2007 FAIM), Philadelphia, USA, June 2007

  31. 31.

    Karhu O, Harkonen R, Sorvali P, Vepsalainen P (1981) Observing working posture in industry: examples of OWAS application. Appl Ergon 12:13–17

    Article  Google Scholar 

  32. 32.

    Hignett S, McAtamney L (2000) Rapid entire body assessment (REBA). Appl Ergon 31(2):201–205

    Article  Google Scholar 

  33. 33.

    Schaub K, Caragnano G, Britzke B, Bruder R (2013) The European assembly worksheet. Theor Issues Ergon Sci 14(6):616–639

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge CNH Industrial Italia for the precious collaboration.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Margherita Peruzzini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peruzzini, M., Grandi, F., Cavallaro, S. et al. Using virtual manufacturing to design human-centric factories: an industrial case. Int J Adv Manuf Technol 115, 873–887 (2021). https://doi.org/10.1007/s00170-020-06229-2

Download citation

Keywords

  • Industrial ergonomics
  • Virtual reality
  • Virtual manufacturing
  • Human-centered design