Skip to main content
Log in

Effect of laser surface texturing on the wettability of WC-Co cutting tools

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

During machining processes, a high temperature is generated in the cutting zone due to plastic deformation, resulting in an increase of wear and consequently reducing the lifetime of cutting tools. The addition of well-defined patterned surfaces with random or regular microfeatures to cutting tools can improve its wettability, providing an enhanced lubrication effect, a reduced tool-chip friction and a lower tool wear rate. In this sense, this work proposes a laser surface texturing approach of WC-Co green compacts to obtain different cross-hatched micropatterns, for enhancing these tools wettability. Results showed that laser surface texturing allowed to produce well-defined, reproducible and equally spaced cross-hatched micropatterns in WC-Co green compacts. A contact angle of 33.5° was obtained for the experiment with a groove and peak width of 250 μm and 3 laser passages, resulting in a 27% reduction, when compared with an untextured cutting tool (45.8°). This approach was found effective to improve the wettability of WC-Co cutting tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fernandes CM, Senos AMR (2011) Cemented carbide phase diagrams: a review. Int J Refract Met Hard Mater 29:405–418. https://doi.org/10.1016/j.ijrmhm.2011.02.004

    Article  Google Scholar 

  2. García J, Collado Ciprés V, Blomqvist A, Kaplan B (2019) Cemented carbide microstructures: a review. Int J Refract Met Hard Mater 80:40–68. https://doi.org/10.1016/j.ijrmhm.2018.12.004

    Article  Google Scholar 

  3. Chang SH, Chen SL (2014) Characterization and properties of sintered WC-Co and WC-Ni-Fe hard metal alloys. J Alloys Compd 585:407–413. https://doi.org/10.1016/j.jallcom.2013.09.188

    Article  Google Scholar 

  4. Trent EM, Wright PK (2000) Cutting tool materials II: cemented carbides. In: Metal Cutting, 4th edn. Butterworth-Heinemann, pp 175–226

  5. Upadhyaya G (2002) Materials science of cemented carbides—an overview. Mater Des 22:483–489. https://doi.org/10.1016/s0261-3069(01)00007-3

    Article  Google Scholar 

  6. Abukhshim NA, Mativenga PT, Sheikh MA (2006) Heat generation and temperature prediction in metal cutting: a review and implications for high speed machining. Int J Mach Tools Manuf 46:782–800. https://doi.org/10.1016/j.ijmachtools.2005.07.024

    Article  Google Scholar 

  7. Kara F, Aslantaş K, Çiçek A (2016) Prediction of cutting temperature in orthogonal machining of AISI 316L using artificial neural network. Appl Soft Comput J 38:64–74. https://doi.org/10.1016/j.asoc.2015.09.034

    Article  Google Scholar 

  8. Grzesik W (2017) Heat in metal cutting. In: Grzesik W (ed) Advanced machining processes of metallic materials. Elsevier, pp 163–182

  9. Trent EM, Wright PK (2000) Heat in metal cutting. In: Metal cutting, 4th edn. Butterworth-Heinemann, pp 97–131

  10. Norouzifard V, Hamedi M (2014) A three-dimensional heat conduction inverse procedure to investigate tool–chip thermal interaction in machining process. Int J Adv Manuf Technol 74:1637–1648. https://doi.org/10.1007/s00170-014-6119-6

    Article  Google Scholar 

  11. Carvalho SR, Lima e Silva SMM, Machado AR, Guimarães G (2006) Temperature determination at the chip-tool interface using an inverse thermal model considering the tool and tool holder. J Mater Process Technol 179:97–104. https://doi.org/10.1016/j.jmatprotec.2006.03.086

    Article  Google Scholar 

  12. Sakkaki M, Sadegh Moghanlou F, Vajdi M, Pishgar FZ, Shokouhimehr M, Shahedi Asl M (2019) The effect of thermal contact resistance on the temperature distribution in a WC made cutting tool. Ceram Int 45:22196–22202. https://doi.org/10.1016/j.ceramint.2019.07.241

    Article  Google Scholar 

  13. Pervaiz S, Deiab I, Moustafa E et al (2014) A coupled FE and CFD approach to predict the cutting tool temperature profile in machining. Procedia CIRP 17:750–754. https://doi.org/10.1016/j.procir.2014.01.104

    Article  Google Scholar 

  14. Öztürk B, Kara F (2020) Calculation and estimation of surface roughness and energy consumption in milling of 6061 alloy. Adv Mater Sci Eng 2020:1–12. https://doi.org/10.1155/2020/5687951

    Article  Google Scholar 

  15. Kara F, Aslantas K, Çiçek A (2014) ANN and multiple regression method-based modelling of cutting forces in orthogonal machining of AISI 316L stainless steel. Neural Comput Appl 26:237–250. https://doi.org/10.1007/s00521-014-1721-y

    Article  Google Scholar 

  16. Möhring HC, Kushner V, Storchak M, Stehle T (2018) Temperature calculation in cutting zones. CIRP Ann 67:61–64. https://doi.org/10.1016/j.cirp.2018.03.009

    Article  Google Scholar 

  17. Kara F, Takmaz A (2019) Optimization of cryogenic treatment effects on the surface roughness of cutting tools. Mater Test 61:1101–1104. https://doi.org/10.3139/120.111427

    Article  Google Scholar 

  18. Bruzzone AAG, Costa HL, Lonardo PM, Lucca DA (2008) Advances in engineered surfaces for functional performance. CIRP Ann Manuf Technol 57:750–769. https://doi.org/10.1016/j.cirp.2008.09.003

    Article  Google Scholar 

  19. Sharma V, Pandey PM (2016) Recent advances in turning with textured cutting tools: a review. J Clean Prod 137:701–715. https://doi.org/10.1016/j.jclepro.2016.07.138

    Article  Google Scholar 

  20. Arslan A, Masjuki HH, Kalam MA, Varman M, Mufti RA, Mosarof MH, Khuong LS, Quazi MM (2016) Surface texture manufacturing techniques and tribological effect of surface texturing on cutting tool performance: a review. Crit Rev Solid State Mater Sci 41:447–481. https://doi.org/10.1080/10408436.2016.1186597

    Article  Google Scholar 

  21. Ma J, Duong NH, Chang S, et al (2015) Assessment of microgrooved cutting tool in dry machining of AISI 1045 steel. J Manuf Sci Eng Trans ASME 137. https://doi.org/10.1115/1.4029565

  22. Ribeiro FSF, Lopes JC, Bianchi EC, de Angelo Sanchez LE (2020) Applications of texturization techniques on cutting tools surfaces—a survey. Int J Adv Manuf Technol 109:1117–1135. https://doi.org/10.1007/s00170-020-05669-0

    Article  Google Scholar 

  23. Childs T, Obikawa T, Maekawa K, Yamane Y (2000) Metal machining: theory and applications. Butterworth-Heinemann, London

    Google Scholar 

  24. Chen Y, Wang J, Chen M (2019) Enhancing the machining performance by cutting tool surface modifications: a focused review. Mach Sci Technol 23:477–509. https://doi.org/10.1080/10910344.2019.1575412

    Article  Google Scholar 

  25. Koshy P, Tovey J (2011) Performance of electrical discharge textured cutting tools. CIRP Ann Manuf Technol 60:153–156. https://doi.org/10.1016/j.cirp.2011.03.104

    Article  Google Scholar 

  26. Otitoju TA, Ahmad AL, Ooi BS (2017) Superhydrophilic (superwetting) surfaces: a review on fabrication and application. J Ind Eng Chem 47:19–40. https://doi.org/10.1016/j.jiec.2016.12.016

    Article  Google Scholar 

  27. Wang X, Zheng H, Wan Y, Feng W, Lam YC (2018) Picosecond laser surface texturing of a Stavax steel substrate for wettability control. Engineering 4:816–821. https://doi.org/10.1016/j.eng.2018.10.006

    Article  Google Scholar 

  28. Kubiak KJ, Wilson MCT, Mathia TG, Carval P (2011) Wettability versus roughness of engineering surfaces. Wear 271:523–528. https://doi.org/10.1016/j.wear.2010.03.029

    Article  Google Scholar 

  29. Bormashenko E (2015) Progress in understanding wetting transitions on rough surfaces. Adv Colloid Interf Sci 222:92–103. https://doi.org/10.1016/j.cis.2014.02.009

    Article  Google Scholar 

  30. Allahyari E, Nivas JJ, Oscurato SL et al (2019) Laser surface texturing of copper and variation of the wetting response with the laser pulse fluence. Appl Surf Sci 470:817–824. https://doi.org/10.1016/j.apsusc.2018.11.202

    Article  Google Scholar 

  31. Chryssolouris G, Stavropoulos P, Salonitis K (2013) Process of laser machining. In: Nee A (ed) Handbook of manufacturing engineering and technology. Springer, London, pp 1–25

    Google Scholar 

  32. Etsion I (2005) State of the art in laser surface texturing. J Tribol 127:248–253. https://doi.org/10.1115/1.1828070

    Article  Google Scholar 

  33. Majumdar JD, Manna I (2003) Laser processing of materials. Sadhana 28:495–562. https://doi.org/10.1007/BF02706446

    Article  Google Scholar 

  34. Guimarães B, Fernandes CM, Figueiredo D, Cerqueira MF, Carvalho O, Silva FS, Miranda G (2020) A novel approach to reduce in-service temperature in WC-Co cutting tools. Ceram Int 46:3002–3008. https://doi.org/10.1016/j.ceramint.2019.09.299

    Article  Google Scholar 

  35. Wu Z, Deng J, Xing Y, Cheng H, Zhao J (2012) Effect of surface texturing on friction properties of WC/Co cemented carbide. Mater Des 41:142–149. https://doi.org/10.1016/j.matdes.2012.05.012

    Article  Google Scholar 

  36. Zhang K, Deng J, Xing Y, Li S, Gao H (2015) Effect of microscale texture on cutting performance of WC/Co-based TiAlN coated tools under different lubrication conditions. Appl Surf Sci 326:107–118. https://doi.org/10.1016/J.APSUSC.2014.11.059

    Article  Google Scholar 

  37. Obikawa T, Kamio A, Takaoka H, Osada A (2011) Micro-texture at the coated tool face for high performance cutting. Int J Mach Tools Manuf 51:966–972. https://doi.org/10.1016/j.ijmachtools.2011.08.013

    Article  Google Scholar 

  38. Ze W, Jianxin D, Yang C, Youqiang X, Jun Z (2012) Performance of the self-lubricating textured tools in dry cutting of Ti-6Al-4V. Int J Adv Manuf Technol 62:943–951. https://doi.org/10.1007/s00170-011-3853-x

    Article  Google Scholar 

  39. Lei S, Devarajan S, Chang Z (2009) A study of micropool lubricated cutting tool in machining of mild steel. J Mater Process Technol 209:1612–1620. https://doi.org/10.1016/j.jmatprotec.2008.04.024

    Article  Google Scholar 

  40. Wu Z, Deng J, Su C, Luo C, Xia D (2014) Performance of the micro-texture self-lubricating and pulsating heat pipe self-cooling tools in dry cutting process. Int J Refract Met Hard Mater 45:238–248. https://doi.org/10.1016/j.ijrmhm.2014.02.004

    Article  Google Scholar 

  41. Meng R, Deng J, Liu Y, Duan R, Zhang G (2018) Improving tribological performance of cemented carbides by combining laser surface texturing and W-S-C solid lubricant coating. Int J Refract Met Hard Mater 72:163–171. https://doi.org/10.1016/j.ijrmhm.2017.12.024

    Article  Google Scholar 

  42. Yue H, Deng J, Ge D, Li X, Zhang Y (2019) Effect of surface texturing on tribological performance of sliding guideway under boundary lubrication. J Manuf Process 47:172–182. https://doi.org/10.1016/j.jmapro.2019.09.031

    Article  Google Scholar 

  43. Bertolete M, Barbosa PA, Machado R et al (2018) Effects of texturing the rake surfaces of cemented tungsten carbide tools by ultrashort laser pulses in machining of martensitic stainless steel. Int J Adv Manuf Technol 98:2653–2664. https://doi.org/10.1007/s00170-018-2407-x

    Article  Google Scholar 

  44. Kataria R, Kumar J (2014) Machining of WC-Co composites—a review. Mater Sci Forum 808:51–64. https://doi.org/10.4028/www.scientific.net/msf.808.51

    Article  Google Scholar 

  45. Mahdavinejad RA, Mahdavinejad A (2005) ED machining of WC–Co. J Mater Process Technol 162–163:637–643. https://doi.org/10.1016/J.JMATPROTEC.2005.02.211

    Article  Google Scholar 

  46. Fang S, Herrmann T, Rosenkranz A, Gachot C, Marro FG, Mücklich F, Llanes L, Bähre D (2016) Tribological performance of laser patterned cemented tungsten carbide parts. Procedia CIRP 42:439–443. https://doi.org/10.1016/J.PROCIR.2016.02.228

    Article  Google Scholar 

  47. Guimarães B, Figueiredo D, Fernandes CM, Silva FS, Miranda G, Carvalho O (2019) Laser machining of WC-Co green compacts for cutting tools manufacturing. Int J Refract Met Hard Mater 81:316–324. https://doi.org/10.1016/j.ijrmhm.2019.03.018

    Article  Google Scholar 

  48. Byskov-Nielsen J, Boll JV, Holm AH, Højsholt R, Balling P (2010) Ultra-high-strength micro-mechanical interlocking by injection molding into laser-structured surfaces. Int J Adhes Adhes 30:485–488. https://doi.org/10.1016/j.ijadhadh.2010.03.008

    Article  Google Scholar 

  49. German RM (1994) Powder metallurgy science, 2nd edn. Metal Powder Industries Federation, Princeton

  50. Hao X, Li H, Yang Y, Xiao S, Song X, Li L (2019) Experiment on cutting performance of textured cemented carbide tools with various wettability levels. Int J Adv Manuf Technol 103:757–768. https://doi.org/10.1007/s00170-019-03471-1

    Article  Google Scholar 

  51. Pang M, Liu X, Liu K (2017) Effect of wettability on the friction of a laser-textured cemented carbide surface in dilute cutting fluid. Adv Mech Eng 9:1–9. https://doi.org/10.1177/1687814017738154

    Article  Google Scholar 

  52. Faria D, Madeira S, Buciumeanu M, Silva FS, Carvalho O (2020) Novel laser textured surface designs for improved zirconia implants performance. Mater Sci Eng C 108:110390. https://doi.org/10.1016/j.msec.2019.110390

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank PhD Eduardo Silva and PhD Filipe Oliveira from University of Aveiro for helping in the 3D optical profilometry analysis.

Funding

This work was supported by FCT (Fundação para a Ciência e a Tecnologia) through the project POCI-01-0145-FEDER-030353 (SMARTCUT) and also by the project NORTE 01-0145, FEDER-000018 (HAMaBICo). Additionally, this work is supported by FCT with the reference project UID/EEA/04436/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Guimarães.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guimarães, B., Fernandes, C.M., Figueiredo, D. et al. Effect of laser surface texturing on the wettability of WC-Co cutting tools. Int J Adv Manuf Technol 111, 1991–1999 (2020). https://doi.org/10.1007/s00170-020-06155-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-06155-3

Keywords

Navigation