Skip to main content
Log in

Multi-axis synchronization machining effects on free-form surface with image processing

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The high surface quality of free-form machined products is demanded by the industries. There were several different approaches proposed in the literature for improving the roughness/texture of machined surface, from tool path generation, tool orientation identification, tool geometry selection, to tool assembly error investigation on the causes and solutions. However, the traces caused by the asynchronous behavior of multi-axis tools were not widely discussed. This study explores the telltale surface characteristic left behind by a ball-end milling operation, using from the image process of scallops/cusps figure of the workpieces, through the spectrum/FFT (fast Fourier transform) plot to identify the parallel of the tool path and the types of traces. Using the distribution of peak frequency and related bandwidth as an index for the performance of synchronous machining, it will reveal the parameters setting of different motion control and the compliance of the dynamic synchronous motion. The tendency of performance index matched the measured roughness result of the workpieces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Denkena B, Böß V, Nespor D, Gilge P, Hohenstein S, Seume J (2015) Prediction of the 3D surface topography after ball end milling and its influence on aerodynamics. Procedia CIRP 31:221–227. https://doi.org/10.1016/j.procir.2015.03.049

    Article  Google Scholar 

  2. Bo P, Bartoň M (2019) On initialization of milling paths for 5-axis flank CNC machining of free-form surfaces with general milling tools. Comput Aided Geom Des 71:30–42. https://doi.org/10.1016/j.cagd.2019.04.012

    Article  MathSciNet  MATH  Google Scholar 

  3. Liu W, Zhou LS, An LL (2012) Constant scallop-height tool path generation for three-axis discrete data points machining. Int J Adv Manuf Technol 63:137–146. https://doi.org/10.1007/s00170-011-3892-3

    Article  Google Scholar 

  4. Xu K, Li Y (2019) Region based five-axis tool path generation for freeform surface machining via image representation. Robot Comput Integr Manuf 57:230–240. https://doi.org/10.1016/j.rcim.2018.12.006

    Article  Google Scholar 

  5. Zhang J, Mo R, Wan N, Xia C (2020) Tool path planning for five-axis flank milling of free-form surfaces. Int J Adv Manuf Technol 108:73–90. https://doi.org/10.1007/s00170-020-05283-0

    Article  Google Scholar 

  6. He G, Sang Y, Pang K, Sun G (2018) An improved adaptive sampling strategy for freeform surface inspection on CMM. Int J Adv Manuf Technol 96:1521–1535. https://doi.org/10.1007/s00170-018-1612-y

    Article  Google Scholar 

  7. Jeyapoovan T, Murugan M (2013) Surface roughness classification using image processing. Measurement 46:2065–2072. https://doi.org/10.1016/j.measurement.2013.03.014

    Article  Google Scholar 

  8. Martínez SS, Vázquez CO, García JG, Ortega JG (2017) Quality inspection of machined metal parts using an image fusion technique. Measurement 111:374–383. https://doi.org/10.1016/j.measurement.2017.08.002

    Article  Google Scholar 

  9. Kukreja A, Pande SS (2019) Estimation of scallop height in freeform surface CNC machining. Int J Adv Manuf Technol 104:4231–4242. https://doi.org/10.1007/s00170-019-04269-x

    Article  Google Scholar 

  10. Kim BH, Chu CN (1994) Effect of cutter mark on surface roughness and scallop height in sculptured surface machining. Comput Aided Des 26:179–188. https://doi.org/10.1016/0010-4485(94)90041-8

    Article  MATH  Google Scholar 

  11. Weng WH, Kuo CFJ (2019) Jerk decision for free-form surface effects in multi-axis synchronization manufacturing. Int J Adv Manuf Technol 105:799–812. https://doi.org/10.1007/s00170-019-04164-5

    Article  Google Scholar 

  12. Zhang Y, Zhao M, Ye P, Jiang J, Zhang H (2018) Optimal curvature-smooth transition and efficient feedrate optimization method with axis kinematic limitations for linear toolpath. Int J Adv Manuf Technol 99:169–179. https://doi.org/10.1007/s00170-018-2496-6

    Article  Google Scholar 

  13. Hasegawa S, Sato R, Shirase K (2016) Influences of geometric and dynamic synchronous errors onto machined surface in 5-axis machining center. J Adv Mech Des Syst Manuf 10:JAMDSM0071-JAMDSM0071. https://doi.org/10.1299/jamdsm.2016jamdsm0071

    Article  Google Scholar 

  14. Liang T, Lu D, Yang X, Zhang J, Ma X, Zhao W (2016) Feed fluctuation of ball screw feed systems and its effects on part surface quality. Int J Mach Tools Manuf 101:1–9. https://doi.org/10.1016/j.ijmachtools.2015.11.002

    Article  Google Scholar 

  15. Zhu R, Kapoor SG, DeVor RE (2001) Mechanistic modeling of the ball end milling process for multi-axis machining of free-form surfaces. J Manuf Sci Eng 123:369–379. https://doi.org/10.1115/1.1369357

    Article  Google Scholar 

  16. Iwabe H, Shimizu K, Sasaki M (2006) Analysis of cutting mechanism by ball end mill using 3D-CAD. JSME Int J Ser C 49:28–34. https://doi.org/10.1299/jsmec.49.28

    Article  Google Scholar 

  17. Mizugaki Y, Hao M, Kikkawa K, Nakagawa T (2001) Geometric generating mechanism of machined surface by ball-nosed end milling. CIRP Ann Manuf Technol 50:69–72. https://doi.org/10.1016/S0007-8506(07)62073-3

    Article  Google Scholar 

  18. Chen X, Zhao J, Zhang W (2015) Influence of milling modes and tool postures on the milled surface for multi-axis finish ball-end milling. Int J Adv Manuf Technol 77:2035–2050. https://doi.org/10.1007/s00170-014-6547-3

    Article  Google Scholar 

  19. Batista MF, Rodrigues AR, Coelho RT (2017) Modelling and characterisation of roughness of moulds produced by high-speed machining with ball-nose end mill. Proc Inst Mech Eng B J Eng Manuf 231:933–944. https://doi.org/10.1177/0954405415584898

    Article  Google Scholar 

  20. Chen JS, Huang YK, Chen MS (2005) A study of the surface scallop generating mechanism in the ball-end milling process. Int J Mach Tools Manuf 45:1077–1084. https://doi.org/10.1016/j.ijmachtools.2004.11.019

    Article  Google Scholar 

  21. Ozturk E, Tunc LT, Budak E (2009) Investigation of lead and tilt angle effects in 5-axis ball-end milling processes. Int J Mach Tools Manuf 49:1053–1062. https://doi.org/10.1016/j.ijmachtools.2009.07.013

    Article  Google Scholar 

  22. Ko TJ, Kim HS, Lee SS (2001) Selection of the machining inclination angle in high-speed ball end milling. Int J Adv Manuf Technol 17:163–170. https://doi.org/10.1007/PL00003943

    Article  Google Scholar 

  23. Palani S, Natarajan U (2011) Prediction of surface roughness in CNC end milling by machine vision system using artificial neural network based on 2D Fourier transform. Int J Adv Manuf Technol 54:1033–1042. https://doi.org/10.1007/s00170-010-3018-3

    Article  Google Scholar 

  24. Lim TS, Lee CM, Kim SW, Lee DW (2002) Evaluation of cutter orientations in 5-axis high speed milling of turbine blade. J Mater Process Technol 130:401–406. https://doi.org/10.1016/S0924-0136(02)00745-8

    Article  Google Scholar 

  25. Samtaş G (2014) Measurement and evaluation of surface roughness based on optic system using image processing and artificial neural network. Int J Adv Manuf Technol 73:353–364. https://doi.org/10.1007/s00170-014-5828-1

    Article  Google Scholar 

  26. Karagiannis S, Stavropoulos P, Ziogas C, Kechagias J (2014) Prediction of surface roughness magnitude in computer numerical controlled end milling processes using neural networks, by considering a set of influence parameters: an aluminium alloy 5083 case study. Proc Inst Mech Eng B J Eng Manuf 228:233–244. https://doi.org/10.1177/0954405413498582

    Article  Google Scholar 

  27. Arizmendi M, Fernández J, de Lacalle LL, Lamikiz A, Gil A, Sánchez J, Campa FJ, Veiga F (2008) Model development for the prediction of surface topography generated by ball-end mills taking into account the tool parallel axis offset. Experimental validation. CIRP Annals 57:101–104. https://doi.org/10.1016/j.cirp.2008.03.045

    Article  Google Scholar 

  28. Xi J, Shentu L, Hu J, Li M (2017) Automated surface inspection for steel products using computer vision approach. Appl Opt 56:184–192. https://doi.org/10.1364/AO.56.000184

    Article  Google Scholar 

  29. Cuka B, Minho C, Kim DW (2018) Vision-based surface roughness evaluation system for end milling. Int J Comput Integr Manuf 31:727–738. https://doi.org/10.1080/0951192X.2017.1407451

    Article  Google Scholar 

  30. Wojciechowski S, Twardowski P, Wieczorowski M (2014) Surface texture analysis after ball end milling with various surface inclination of hardened steel. Metrol Meas Syst 21:145–156. https://doi.org/10.2478/mms-2014-0014

    Article  Google Scholar 

  31. Li Y, Lin J, Wang X, Liao Y (2011) Multiple-axis synchronization evaluation for CNC machine tool based on sensorless measurement. In 2011 IEEE International Symposium on Assembly and Manufacturing (ISAM) (pp 1–5). https://doi.org/10.1109/ISAM.2011.5942331

Download references

Funding

The research was supported by the Ministry of Science and Technology of the Republic of China under grant number: 109-2221-E-011-149.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Feng Jeffrey Kuo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, CF.J., Weng, WH. Multi-axis synchronization machining effects on free-form surface with image processing. Int J Adv Manuf Technol 111, 1135–1146 (2020). https://doi.org/10.1007/s00170-020-06040-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-06040-z

Keywords

Navigation