Skip to main content
Log in

Analysis of asymmetrical rolling of strip considering two deformation region types

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Analytical models of two deformation region types considering the percentages of three regions in the plastic deformation zone are proposed for analyzing asymmetrical rolling of strip and used to calculate the critical speed ratio, three region percentages, roll force, and roll torque. The effective range of speed ratio on thickness reduction increases with increasing critical speed ratio. When the deformation region type is backward-slip zone + cross-shear zone + forward-slip zone (B+C+F), with increasing speed ratio, the thickness reduction in asymmetrical strip rolling increases evidently, but remains unchanged when the critical speed ratio is exceeded, where the deformation region type is backward-slip zone + cross-shear zone (B+C). It is achievable to increase thickness reduction by increasing the roll force and front tension, which can not only increase the reduction rate, but also increase the critical speed ratio. The effect of asymmetrical rolling on thickness reduction is enhanced with decreasing of the roll force and front and back tension because of the increasing cross-shear zone percentage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

Abbreviations

B+C+F:

backward-slip zone + cross-shear zone + forward-slip zone

B+C:

backward-slip zone + cross-shear zone

C+F:

cross-shear zone + forward-slip zone

OB:

only backward-slip zone

OC:

only cross-shear zone

OF:

only forward-slip zone

H, h :

thicknesses at the inlet and the outlet of the roll gap, respectively

hb, hf :

thicknesses at the lower and the upper neutral point, respectively

h x :

variable strip thickness at the roll gap

∆h :

reduction of thickness

vf, vs :

peripheral speeds of the upper and the lower roll, respectively

vH, vh :

linear speeds of strip at the inlet and the outlet, respectively

l :

length of contact

lb, lc, lf :

lengths of the backward-slip zone, the cross-shear zone and the forward-slip zone, respectively

Qb, Qc, Qf :

percentages of the backward-slip zone, the cross-shear zone and the forward-slip zone, respectively

i :

speed ratio

i c :

critical speed ratio

αf, αs :

neutral angles of the upper and the lower roll, respectively

α l :

contact angle of the roll gap

α :

variable angle of contact at the roll gap

σx, px :

horizontal and vertical stresses at the roll gap, respectively

σb, σf :

back and front tensions, respectively

τf1, τf2 :

surface shear stresses of the upper and the lower roll, respectively

K :

plane deformation resistance

f1, f2 :

friction coefficients of the upper and the lower roll, respectively

pxb, pxc, pxf :

rolling pressures per unit width in the backward-slip zone, the cross-shear zone and the forward-slip zone, respectively

P :

roll force per unit width

R :

radius of the work roll

D :

diameter of the work roll

x :

horizontal distance from the exit point in the roll gap

C1, C2, C3 :

constants

Shf, SHf :

forward-slip and backward-slip coefficients of the upper roll, respectively

Shs, SHs :

forward-slip and backward-slip coefficients of the lower roll, respectively

Tf, Ts :

roll torque of the upper and lower roll per unit width, respectively

T :

total roll torque per unit width

ε :

reduction ratio

η :

contribution ratio of reduction

λ :

sensitive coefficient of reduction

References

  1. Wang J, Liu XH, Guo WP (2018) Analysis of mechanical parameters for asymmetrical strip rolling by slab method. Int J Adv Manuf Technol 98(9):2297–2309. https://doi.org/10.1007/s00170-018-2368-0

    Article  Google Scholar 

  2. Hwang YM, Tzou GY (1996) Stress analysis of asymmetrical cold rolling of clad sheet using the slab method. J Mater Eng Perform 5(5):621–631

    Article  Google Scholar 

  3. Hwang YM, Tzou GY (1993) An analytical approach to asymmetrical cold strip rolling using the slab method. J Mater Eng Perform 2(4):597–606. https://doi.org/10.1007/BF02661746

    Article  Google Scholar 

  4. Hwang YM, Chen TH (1996) Analysis of asymmetrical sheet rolling by stream function method. JSME Int J A-Solid M 39(4):598–605. https://doi.org/10.1299/jsmea1993.39.4_598

    Article  MATH  Google Scholar 

  5. Hwang YM, Chen DC, Tzou GY (1999) Study on asymmetrical sheet rolling by the finite element method. Chinese J Mech-Ser A 15(4):149–155

    Google Scholar 

  6. Tzou GY, Huang MN (2001) Study on minimum thickness for asymmetrical hot-and-cold PV rolling of sheet considering constant shear friction. J Mater Process Technol 119(1–3):229–233. https://doi.org/10.1016/s0924-0136(01)00965-7

    Article  Google Scholar 

  7. Tzou GY, Huang MN (2000) Study on the minimum thickness for the asymmetrical PV cold rolling of sheet. J Mater Process Technol 105(3):344–351. https://doi.org/10.1016/s0924-0136(00)00574-4

    Article  Google Scholar 

  8. Tang DL, Liu XH, Li XY, Peng LG (2013) Permissible minimum thickness in asymmetrical cold rolling. J Iron Steel Res Int 20(11):21–26. https://doi.org/10.1016/S1006-706X(13)60191-0

    Article  Google Scholar 

  9. Tang DL, Liu XH, Song M, Yu HL (2014) Experimental and theoretical study on minimum achievable foil thickness during asymmetric rolling. PLoS One 9(9):e106637. https://doi.org/10.1371/journal.pone.0106637

    Article  Google Scholar 

  10. Qwamizadeh M, Kadkhodaei M, Salimi M (2012) Asymmetrical sheet rolling analysis and evaluation of developed curvature. Int J Adv Manuf Technol 61(1–4):227–235

    Article  Google Scholar 

  11. Qwamizadeh M, Kadkhodaei M, Salimi M (2014) Asymmetrical rolling analysis of bonded two-layer sheets and evaluation of outgoing curvature. Int J Adv Manuf Technol 73(1–4):521–533

    Article  Google Scholar 

  12. Qwamizadeh M, Kadkhodaei M, Salimi M (2013) Slab analysis of asymmetrical rolling of bonded two-layer sheets. ISIJ Int 53(2):265–273

    Article  Google Scholar 

  13. Wang HY, Zhang DH, Zhao DW (2015) Analysis of asymmetrical rolling of unbonded clad sheet by slab method considering vertical shear stress. ISIJ Int 55(5):1058–1066. https://doi.org/10.2355/isijinternational.55.1058

    Article  Google Scholar 

  14. Salimi M, Sassani F (2002) Modified slab analysis of asymmetrical plate rolling. Int J Mech Sci 44(9):1999–2023

    Article  Google Scholar 

  15. Kadkhodaei M, Salimi M, Poursina M (2007) Analysis of asymmetrical sheet rolling by a genetic algorithm. Int J Mech Sci 49(5):622–634

    Article  Google Scholar 

  16. Salimi M, Kadkhodaei M (2004) Slab analysis of asymmetrical sheet rolling. J Mater Process Technol 150(3):215–222. https://doi.org/10.1016/j.jmatprotec.2004.01.011

    Article  Google Scholar 

  17. Aboutorabi A, Assempour A, Afrasiab H (2016) Analytical approach for calculating the sheet output curvature in asymmetrical rolling: in the case of roll axis displacement as a new asymmetry factor. Int J Mech Sci 105:11–22

    Article  Google Scholar 

  18. Afrouz F, Parvizi A (2015) An analytical model of asymmetric rolling of unbounded clad sheets with shear effects. J Mater Process Technol 20:162–171. https://doi.org/10.1016/j.jmapro.2015.08.007

    Article  Google Scholar 

  19. Zhang SH, Zhao DW, Gao CR, Wang GD (2012) Analysis of asymmetrical sheet rolling by slab method. Int J Mech Sci 65(1):168–176

    Article  Google Scholar 

  20. Tian Y, Guo YH, Wang ZD, Wang GD (2009) Analysis of rolling pressure in asymmetrical rolling process by slab method. J Iron Steel Res Int 16(4):22–26

    Article  Google Scholar 

  21. Jiang ZY, Zhu HT, Tieu AK (2005) Study of work roll edge contact in asymmetrical rolling by modified influence function method. J Mater Process Technol 162:512–518

    Article  Google Scholar 

  22. Razani NA, Mollaei Dariani B, Soltanpour M (2018) Analytical approach of asymmetrical thermomechanical rolling by slab method. Int J Adv Manuf Technol 94(1):175–189. https://doi.org/10.1007/s00170-017-0801-4

    Article  Google Scholar 

  23. Mousavi SAAA, Ebrahimi SM, Madoliat R (2007) Three dimensional numerical analyses of asymmetric rolling. J Mater Process Technol 187-188:725–729. https://doi.org/10.1016/j.jmatprotec.2006.11.045

    Article  Google Scholar 

  24. Lu JS, Harrer OK, Schwenzfeier W, Fischer FD (2000) Analysis of the bending of the rolling material in asymmetrical sheet rolling. Int J Mech Sci 42(1):49–61. https://doi.org/10.1016/s0020-7403(98)00112-x

    Article  MATH  Google Scholar 

  25. Gao H, Ramalingam SC, Barber GC, Chen G (2002) Analysis of asymmetrical cold rolling with varying coefficients of friction. J Mater Process Tech 124(1–2):178–182

    Article  Google Scholar 

  26. Hwang YM, Tzou GY (1995) An analytical approach to asymmetrical hot-sheet rolling considering the effects of the shear-stress and internal moment at the roll gap. J Mater Process Technol 52(2–4):399–424

    Article  Google Scholar 

  27. Gudur PP, Salunkhe MA, Dixit US (2008) A theoretical study on the application of asymmetric rolling for the estimation of friction. Int J Mech Sci 50(2):315–327. https://doi.org/10.1016/j.ijmecsci.2007.06.002

    Article  MATH  Google Scholar 

  28. Hwang YM, Tzou GY (1997) Analytical and experimental study on asymmetrical sheet rolling. Int J Mech Sci 39(3):289–303

    Article  Google Scholar 

  29. Hwang YM, Tzou GY (1996) An analytical approach to asymmetrical cold- and hot-rolling of clad sheet using the slab method. J Mater Process Technol 62(1–3):249–259

    Article  Google Scholar 

  30. Pan SC, Huang MN, Tzou GY, Syu SW (2006) Analysis of asymmetrical cold and hot bond rolling of unbounded clad sheet under constant shear friction. J Mater Process Technol 177(1–3):114–120. https://doi.org/10.1016/j.jmatprotec.2006.04.071

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, the 111 Project (B16009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianghua Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Liu, X., Wang, J. et al. Analysis of asymmetrical rolling of strip considering two deformation region types. Int J Adv Manuf Technol 110, 2767–2785 (2020). https://doi.org/10.1007/s00170-020-06022-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-06022-1

Keywords

Navigation