Skip to main content
Log in

Comparison between sound perception and self-organizing maps in the monitoring of the bearing degradation

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This study aims to monitor and detect bearing defects from measured signals on a wind turbine during 50 operating days using two methods. The first method involves a perceptual approach to classify the selected signals based on 50 measurements. The second method used is an unsupervised classification method called the Self-Organizing Map (SOM). Overall, the perceptive approach proved to be simple and effective compared to conventional methods of treatment and diagnosis of defects, as listeners were able to classify the selected sounds in the order of bearing degradation, allowing the severity of the bearing defect to be tracked. Furthermore, the neural classifier provided relevant information on the evolution of bearing degradation, as it could automatically cluster the vibration signal into four groups corresponding to the bearing life stages. Thus, these results can effectively contribute to well-timed maintenance decisions. In addition, the advantages and deficiencies of one method over the other are briefly discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. 60268–13 I (1998) Sound system equipment—part 13: listening tests on loudspeakers. International Electrotechnical Commission

  2. Lipshitz SP, Vanderkooy J (1981) The great debate: subjective evaluation. J Audio Eng Soc 29(7/8):482–491

    Google Scholar 

  3. Vincent H (2005) Etude de la qualité sonore d’appareils de soufflage et de climatisation. M. Sc Thesis, Pierre & Marie Curie University, Paris

  4. Parizet E, Hamzaoui N, Jacquemoud J (2002) Noise assessment in a high-speed train. Appl Acoust 63(10):1109–1124

    Article  Google Scholar 

  5. Minard A (2013) Acoustic perception and comfort of air-treatment systems. Université de La Rochelle

  6. Nacer H (2008) Prédiction du rayonnement acoustique des structures à partir de mesures vibratoires: Evaluation d’une méthode intégrale simplifiée en temporel. Rev Mécanique Appl Théorique 1(10):759–767

    Google Scholar 

  7. Abdelhamid M, Nacer H, Louis GJ (2010) Subjective evaluations of sound radiated by impacted plates, using the design of experiments method. Appl Acoust 71(6):531–538

    Article  Google Scholar 

  8. Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43(1):59–69

    Article  MathSciNet  Google Scholar 

  9. Qiu H, Lee J, Lin J, Yu G (2003) Robust performance degradation assessment methods for enhanced rolling element bearing prognostics. Adv Eng Inform 17(3–4):127–140

    Article  Google Scholar 

  10. Ferles C, Papanikolaou Y, Naidoo KJ (2018) Denoising autoencoder self-organizing map (DASOM). Neural Netw 105:112–131

    Article  Google Scholar 

  11. Hu J, Zhang L, Liang W (2013) Dynamic degradation observer for bearing fault by MTS–SOM system. Mech Syst Signal Process 36(2):385–400

    Article  Google Scholar 

  12. Moshou D, Hostens I, Papaioannou G, Ramon H (2005) Dynamic muscle fatigue detection using self-organizing maps. Appl Soft Comput 5(4):391–398

    Article  Google Scholar 

  13. Li Z, Fang H, Huang M, Wei Y, Zhang L (2018) Data-driven bearing fault identification using improved hidden Markov model and self-organizing map. Comput Ind Eng 116:37–46

    Article  Google Scholar 

  14. Zhao Z-l, Qiu Z-c, Zhang X-m (2016) Vibration control of a pneumatic driven piezoelectric flexible manipulator using self-organizing map based multiple models. Mech Syst Signal Process 70:345–372

    Article  Google Scholar 

  15. Rai A, Upadhyay S (2017) Bearing performance degradation assessment based on a combination of empirical mode decomposition and k-medoids clustering. Mech Syst Signal Process 93:16–29

    Article  Google Scholar 

  16. Depledt F, Sauvageot F (2002) Évaluation sensorielle des produits alimentaires. Techniques de l’ingénieur Biochimie alimentaire, analyses et alimentation humaine base documentaire : TIB470DUO (ref. article : f4000)

  17. Lobreau-Callen D, Clément M-C, Marmion V (2000) Les miels. Techniques de l’ingénieur Filière de production : produits d'origine animale base documentaire : TIB432DUO (ref. article : f7000)

  18. Crochemore S, Nesa D, Couderc S (2004) Méthodes d’analyse sensorielle des matériaux plastiques. Techniques de l'ingénieur Plastochimie et analyse physico-chimique base documentaire : TIB139DUO (ref. article : am3290)

  19. Gouronnec A-M (2004) Analyses olfactométriques ou mesure des odeurs par analyse sensorielle. Techniques de l'ingénieur Analyses dans l’environnement : eau et air base documentaire : TIB831DUO (ref. article : p446)

  20. Dreyfus G (2005) Neural networks: methodology and applications. Springer-Verlag Berlin Heidelberg

  21. Du K-L, Swamy MN (2013) Neural networks and statistical learning. Springer-Verlag London

  22. Younes R, Ouelaa N, Hamzaoui N, Djebala A (2015) Experimental study of real gear transmission defects using sound perception. Int J Adv Manuf Technol 76(5–8):927–940

    Article  Google Scholar 

  23. Susini P, McAdams S, Winsberg S (1999) A multidimensional technique for sound quality assessment. Acta Acustica 85(5):650–656

    Google Scholar 

  24. McDermott BJ (1969) Multidimensional analyses of circuit quality judgments. J Acoust Soc Am 45(3):774–781

    Article  Google Scholar 

  25. Suzuki T, Yasui S, Ojima Y (2010) Evaluating adaptive paired comparison experiments. In: Frontiers in statistical quality control, vol 9. Springer, pp 341–350

  26. Mattila V-V (2002) Ideal point modelling of speech quality in mobile communications based on multidimensional scaling (MDS). In: audio engineering society convention 112. Audio Engineering Society

  27. Wältermann M, Scholz K, Möller S, Huo L, Raake A, Heute U (2008) An instrumental measure for end-to-end speech transmission quality based on perceptual dimensions: framework and realization. In: Ninth Annual Conference of the International Speech Communication Association

  28. Roussarie V (1999) Analyse perceptive de structures vibrantes simulées par modèle physique. Dissertation, Université du Maine, France

  29. Zimmer K, Ellermeier W, Schmid C (2004) Using probabilistic choice models to investigate auditory unpleasantness. Acta Acustica 90(6):1019–1028

    Google Scholar 

  30. David HA (1988) The method of paired comparisons. Griffin C; Oxford University Press, London; New York

Download references

Acknowledgements

Acknowledgements are made for the measurements used in this work provided through http://data-acoustics.com/Database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramdane Younes.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alia, S., Nasri, R., Meddour, I. et al. Comparison between sound perception and self-organizing maps in the monitoring of the bearing degradation. Int J Adv Manuf Technol 110, 2003–2013 (2020). https://doi.org/10.1007/s00170-020-06009-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-06009-y

Keywords

Navigation