Skip to main content

Advertisement

Log in

Intelligent design in continuous galvanizing process for advanced ultra-high-strength dual-phase steels using back-propagation artificial neural networks and MOAMP-Squirrels search algorithm

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this research work, the optimization of a back-propagation artificial neural network (BPNN) using a new multi-objective bio-inspired algorithm based on squirrels is proposed in order to optimize the main continuous galvanizing process parameters such as the initial cooling rate (CR1), the isothermal holding time at 460 oC (tg), and the final cooling rate (CR2). The computational approach predicts in a satisfactory way the most important mechanical properties including yield strength (YS), ultimate tensile strength (UTS), and elongation at fracture (EL) of cold rolled low carbon DP steels treated under continuous galvanizing thermal cycle conditions. The experimental production of galvanized ultra-high-strength DP steels from cold rolled low carbon sheets with a minimum UTS of 1100 MPa, YS between 550 and 750 MPa, and a minimum elongation of 10% is possible using the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alibeigi S, Kavitha R, Meguerian R, McDermid J (2011) Reactive wetting of high Mn steels during continuous hot-dip galvanizing. Acta Mater 59:3537–3549

    Article  Google Scholar 

  2. Bahrami A, Anijdan SM, Ekrami A (2005) Prediction of mechanical properties of dP steels using neural network model. J Alloys Compd 392:177–182

    Article  Google Scholar 

  3. Baykasoğlu A., Baykasoğlu C., Cetin E (2020) Multi-objective crashworthiness optimization of lattice structure filled thin-walled tubes. Thin-Walled Struct 149(106):630

    Google Scholar 

  4. Bezerra M, Santelli R, Oliveira E, Villar L, Escaleira L (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76:965–977

    Article  Google Scholar 

  5. Bräutigam–Matus K, Altamirano G, Salinas A, Flores A, Goodwin F (2018) Experimental determination of continuous cooling transformation (CCT) diagrams for dual-phase steels from the intercritical temperature range. Metals 8:1–16

    Article  Google Scholar 

  6. Caballero R, González M, Guerrero F, Molina J, Paralera C (2007) Solving a multiobjective location routing problem with a metaheuristic based on tabu search. application to a real case in andalusia. Eur J Oper Res 177:1751–1763

    Article  Google Scholar 

  7. Calcagnotto M, Ponge D, Raabe D (2012) Microstructure control during fabrication of ultrafine grained dual-phase steel: characterization and effect of intercritical annealing parameters. ISIJ Int 52:874–883

    Article  Google Scholar 

  8. Costa P, Altamirano G, Salinas A, González-González D, Goodwin F (2019) Optimization of the continuous galvanizing heat treatment process in ultra-high strength dual phase steels using a multivariate model. Metals 9:1–17

    Article  Google Scholar 

  9. Cota A, Modenesi P, Barbosa R, Santos D (1999) Determination of CCT diagrams by thermal analysis of a HSLA bainitic steel. Scr Mater 40:165–169

    Article  Google Scholar 

  10. Dutta T, Dey S, Datta S, Das D (2019) Designing dual-phase steels with improved performance using aNN and gA in tandem. Comput Mater Sci 157:6–16

    Article  Google Scholar 

  11. Flaxa V, Shaw J (2002) Material applications in ULSAB-AVC (advanced vehicle concepts). In: International body engineering conference & exhibition and automotive & transportation technology congress, pp 1–8

  12. Fonstein N (2015) Advanced high strength sheet steels: physical metallurgy, design, processing, and properties. Springer , Berlin

    Book  Google Scholar 

  13. Galán J, Samek L, Verleysen P, Verbeken K, Houbaert Y (2012) Advanced high strength steels for automotive industry. Rev Metal 48:118–131

    Article  Google Scholar 

  14. Ghassemi-Armaki H, Maaß R, Bhat S, Sriram S, Greer J, Kumar K (2014) Deformation response of ferrite and martensite in a dual-phase steel. Acta Mater 62:197–211

    Article  Google Scholar 

  15. Granbom Y (2008) Effects of process parameters prior to annealing on the formability of two cold rolled dual phase steels. Steel Res Int 79:297–305

    Article  Google Scholar 

  16. Han Y, Kuang S, Liu H, Jiang Y, Liu G (2014) Research of microstructure and mechanical properties of the cold rolled hot-dip galvanizing DP450 steel with low carbon and high chromium. Adv Mater Res 1004-1005:188–192

    Article  Google Scholar 

  17. Haque ME, Sudhakar K (2001) Prediction of corrosion–fatigue behavior of DP steel through artificial neural network. Int J Fatigue 23:1–4

    Article  Google Scholar 

  18. Haque ME, Sudhakar K (2002) ANN back-propagation prediction model for fracture toughness in microalloy steel. Int J Fatigue 24:1003–1010

    Article  Google Scholar 

  19. Hosseini S, Zarei-Hanzaki A, Panah MY, Yuec S (2004) ANN model for prediction of the effects of composition and process parameters on tensile strength and percent elongation of Si–Mn tRIP steels. Mater Sci Eng A 374:122–128

    Article  Google Scholar 

  20. Huseyin A, Havva K, Ceylan K (2010) Effect of intercritical annealing parameters on dual phase behavior of commercial low-alloyed steels. J Iron Steel Res Int 17:73–78

    Article  Google Scholar 

  21. Jain M, Singh V, Rani A (2019) A novel nature-inspired algorithm for optimization: Squirrel search algorithm. Swarm Evol Comput 44:148–175

    Article  Google Scholar 

  22. Jamwal R, Frimpong J, Ehrhardt B, Bracht H, Boggs R, SW B (2014) Process for making cold-rolled dual phase steel sheet

  23. Khondker R, Mertens A, McDermid JR (2007) Effect of annealing atmosphere on the galvanizing behavior of dual-phase steel. Mater Sci Eng A 463:157–165

    Article  Google Scholar 

  24. Kim S, Cho Y, Oh C, Kim D, Moon M (2009) Development of a dual phase steel using orthogonal design method. Mater Des 30:1251–1257

    Article  Google Scholar 

  25. Krajewski S, Nowacki J (2014) Dual-phase steels microstructure and properties consideration based on artificial intelligence techniques. Arch Civ Mech Eng 14:278–286

    Article  Google Scholar 

  26. Kuang S, Kang Y, Yu H, Liu R (2009) Effect of continuous annealing parameters on the mechanical properties and microstructures of a cold rolled dual phase steel. Int J Min Met Mater 16: 159–164

    Article  Google Scholar 

  27. Pan E, Di H, Jiang G, Bao C (2014) Effect of heat treatment on microstructures and mechanical properties of hot-dip galvanized DP steels. Acta Metall Sin 27:469–475

    Article  Google Scholar 

  28. Pleschiutschnigg F, Jamnis V, Talwar S, Misra A, Atluri R, Singh R, Shankar P, Verma R, Goyal R, Mishra V, Deepu B, Meierling P, Pleschiutschnigg J (2004) Start of dual-phase hot strip production in the MPS. Dolvi plant of Ispat Industries Ltd. in India. Steel Grips 2:171–176

    Google Scholar 

  29. Rashid M (1981) Dual phase steels. Annu Rev Mater Sci 11:245–266

    Article  Google Scholar 

  30. Schmitt J, Iung T (2018) New developments of advanced high-strength steels for automotive applications. Comptes Rendus Physique 19:641–656

    Article  Google Scholar 

  31. Sterjovski Z, Nolan D, Carpenter K, Dunne D, Norrish J (2005) Artificial neural networks for modelling the mechanical properties of steels in various applications. J. Mater Process Technol 170:536–544

    Article  Google Scholar 

  32. Tasan C, Diehl M, Yan D, Bechtold M, Roters F, Schemmann L, Zheng C, Peranio N, Ponge D, Koyama M, Tsuzaki K, Raabe D (2015) An overview of dual-phase steels: advances in microstructure-oriented processing and micromechanically guided design. Annu Rev Mater Res 45:391–431

    Article  Google Scholar 

  33. Vafaeenezhad H, Ghanei S, Seyedein S, Beygi H, Mazinani M (2014) Process control strategies for dual-phase steel manufacturing using ANN and ANFIS. J Mater Eng Perform 23(11):3975–3983

    Article  Google Scholar 

  34. Wang Y, Du T, Liu T, Zhang L (2019) Dynamic multiobjective squirrel search algorithm based on decomposition with evolutionary direction prediction and bidirectional memory populations. IEEE Access 7:115,997–116,013

    Article  Google Scholar 

  35. Waterschoot T, Cooman BD, De A, Vandeputte S (2003) Static strain aging phenomena in cold-rolled dual-phase steels. Metall and Mater Trans A 34:781–791

    Article  Google Scholar 

  36. Wu R, Wang L, Jin X (2013) Thermal stability of austenite and properties of quenching & partitioning (QṖ) treated AHSS. Phys Procedia 50:8–12

    Article  Google Scholar 

  37. You W, Xu W, Liu Y, Bai B (2007) Effect of chromium on CCT diagrams of novel air-cooled bainite steels analyzed by neural network. J Iron Steel Res Int 14:39–42

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar O. Reséndiz-Flores.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altamirano-Guerrero, G., García-Calvillo, I.D., Reséndiz-Flores, E.O. et al. Intelligent design in continuous galvanizing process for advanced ultra-high-strength dual-phase steels using back-propagation artificial neural networks and MOAMP-Squirrels search algorithm. Int J Adv Manuf Technol 110, 2619–2630 (2020). https://doi.org/10.1007/s00170-020-06002-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-06002-5

Keywords

Navigation