Skip to main content

Advertisement

Log in

Finite element simulation of hybrid microwave sintering based on power approach

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Microwave (MW) sintering offers higher heating rate, rapid processing, reduced energy consumption, and reduced sintering temperature. However, the technique is not fully understood, difficult to control, and often relies on experience and trial-and-error approach. Consequently, hot spots, uneven heating, thermal runaway, and shape distortion develop in sintered compacts. Therefore, developing a model that can simulate the sintering process, enhance predictability, and determine the critical sintering conditions is essential. Multiphysics finite element (FE) modelling of hybrid MW sintering of a magnesium alloy AZ61 compact was undertaken in this study. The FE model coupled the electromagnetic, heat conduction, and densification equations. The model utilised parameters related to the furnace, compact, and susceptor to predict the spatial distribution of electric field, thermal response, and densification in the compact. A power-based sintering criterion was developed to predict the sintering of the compact and estimate its critical sintering energy. Modelling results showed that heating time, compact size, and thickness of the susceptor are critical to the sintering process. It was also shown that the susceptor not only mediated the sintering of the compact but also homogenised its temperature and densification. Thus, MW sintering of the compact was predicted to occur at 500 °C for 8 to 10 min with a predicted relative density of about 0.98. Experimental MW sintering data showed good concurrence with the developed model. These results are useful for controlling the MW sintering process, eliminating trial-and-error, and determining the critical sintering conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Blosi M, Albonetti S, Dondi M, Martelli C, Baldi G (2011) Microwave-assisted polyol synthesis of Cu nanoparticles. J Nanopart Res 13:127–138

    Article  Google Scholar 

  2. Kawasaki H, Kosaka Y, Myoujin Y, Narushima T, Yonezawa T, Arakawa R (2011) Microwave-assisted polyol synthesis of copper nanocrystals without using additional protective agents. Chem Commun (Camb) 47:7740–7742. https://doi.org/10.1039/c1cc12346g

    Article  Google Scholar 

  3. Kwak M, Robinson P, Bismarck A, Wise R (2015) Microwave curing of carbon–epoxy composites: penetration depth and material characterisation. Compos Part A Appl Sci Manuf 75:18–27. https://doi.org/10.1016/J.COMPOSITESA.2015.04.007

    Article  Google Scholar 

  4. Xu X, Wang X, Liu W, Zhang X, Li Z, du S (2016) Microwave curing of carbon fiber/bismaleimide composite laminates: material characterization and hot pressing pretreatment. Mater Des 97:316–323. https://doi.org/10.1016/j.matdes.2016.02.093

    Article  Google Scholar 

  5. Mishra P, Sethi G, Upadhyaya A (2006) Modeling of microwave heating of particulate metals. Metall Mater Trans B Process Metall Mater Process Sci 37:839–845. https://doi.org/10.1007/s11663-006-0066-z

    Article  Google Scholar 

  6. Riedel H, Svoboda J (2006) Simulation of microwave sintering with advanced sintering models. In: Willert-Porada M (ed) Advances in microwave and radio frequency processing. Springer-Verlag, Berlin, pp 210–216

    Chapter  Google Scholar 

  7. Manière C, Zahrah T, Olevsky EA (2017) Fully coupled electromagnetic-thermal-mechanical comparative simulation of direct vs hybrid microwave sintering of 3Y-ZrO2. J Am Ceram Soc 100:2439–2450. https://doi.org/10.1111/jace.14762

    Article  Google Scholar 

  8. Roy R, Agrawal D, Cheng J, Gedevanishvili S (1999) Full sintering of powdered-metal bodies in a microwave field. Nature 401:668–670

    Article  Google Scholar 

  9. Mishra RR, Sharma AK (2016) Microwave-material interaction phenomena: heating mechanisms, challenges and opportunities in material processing. Compos Part A Appl Sci Manuf 81:78–97

    Article  Google Scholar 

  10. Oghbaei M, Mirzaee O (2010) Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J Alloys Compd 494:175–189. https://doi.org/10.1016/j.jallcom.2010.01.068

    Article  Google Scholar 

  11. Akinwekomi AD, Law W-C, Tang C-Y, Chen L, Tsui CP (2016) Rapid microwave sintering of carbon nanotube-filled AZ61 magnesium alloy composites. Compos Part B Eng 93:302–309. https://doi.org/10.1016/j.compositesb.2016.03.041

    Article  Google Scholar 

  12. Akinwekomi AD, Law W-C, Choy M-T, Chen L, Tang CY, Tsui GCP, Yang XS (2018) Processing and characterisation of carbon nanotube-reinforced magnesium alloy composite foams by rapid microwave sintering. Mater Sci Eng A 726:82–92. https://doi.org/10.1016/j.msea.2018.04.069

    Article  Google Scholar 

  13. Mishra RR, Sharma AK (2016) On mechanism of in-situ microwave casting of aluminium alloy 7039 and cast microstructure. Mater Des 112:97–106. https://doi.org/10.1016/J.MATDES.2016.09.041

    Article  Google Scholar 

  14. Mishra RR, Sharma AK (2017) Effect of susceptor and mold material on microstructure of in-situ microwave casts of Al-Zn-Mg alloy. Mater Des 131:428–440. https://doi.org/10.1016/j.matdes.2017.06.038

    Article  Google Scholar 

  15. Babu A, Arora HS, Behera SN, Sharma M, Grewal HS (2018) Towards highly durable bimodal composite claddings using microwave processing. Surf Coatings Technol 349:655–666. https://doi.org/10.1016/j.surfcoat.2018.06.059

    Article  Google Scholar 

  16. Tang CY, Zhang LN, Wong CT, Chan KC, Yue TM (2011) Fabrication and characteristics of porous NiTi shape memory alloy synthesized by microwave sintering. Mater Sci Eng A 528:6006–6011. https://doi.org/10.1016/j.msea.2011.04.040

    Article  Google Scholar 

  17. Tamang S, Potaliya P, Aravindan S (2017) Corrosion behaviour of magnesium–yttria composite sintered by microwave hybrid heating. Mater Res Innov 22:422–426. https://doi.org/10.1080/14328917.2017.1337297

    Article  Google Scholar 

  18. Rybakov KI, Olevsky EA, Krikun EV (2013) Microwave sintering: fundamentals and modeling. J Am Ceram Soc 96:1003–1020. https://doi.org/10.1111/jace.12278

    Article  Google Scholar 

  19. Demirskyi D, Agrawal D, Ragulya A (2013) Tough ceramics by microwave sintering of nanocrystalline titanium diboride ceramics. Ceram Int 40:1–8. https://doi.org/10.1016/j.ceramint.2013.07.010

    Article  Google Scholar 

  20. Akinwekomi AD, Choy MT, Law WC, Tang CY (2016) Finite element modelling of CNT-filled magnesium alloy matrix composites under microwave irradiation. Mater Sci Forum 867:83–87. https://doi.org/10.4028/www.scientific.net/MSF.867.83

    Article  Google Scholar 

  21. Santos T, Valente MA, Monteiro J, Sousa J, Costa LC (2011) Electromagnetic and thermal history during microwave heating. Appl Therm Eng 31:3255–3261. https://doi.org/10.1016/j.applthermaleng.2011.06.006

    Article  Google Scholar 

  22. Buchelnikov VD, Louzguine-Luzgin DV, Xie G, Li S, Yoshikawa N, Sato M, Anzulevich AP, Bychkov IV, Inoue A (2008) Heating of metallic powders by microwaves: experiment and theory. J Appl Phys 104:113505. https://doi.org/10.1063/1.3009677

    Article  Google Scholar 

  23. Rybakov KI, Semenov VE, Egorov SV, Eremeev AG, Plotnikov IV, Bykov YV (2006) Microwave heating of conductive powder materials. J Appl Phys 99:023506–023509. https://doi.org/10.1063/1.2159078

    Article  Google Scholar 

  24. Bouvard D, Charmond S, Carry CP (2010) Finite element modelling of microwave sintering. In: Bordia RK, Olevsky EA (eds) Advances in Sintering Science and Technology. Wiley, Inc., Hoboken, pp 171–180

    Chapter  Google Scholar 

  25. Shukla AK, Mondal A, Upadhyaya A (2010) Numerical modeling of microwave heating. Sci Sinter 42:99–124. https://doi.org/10.2298/SOS1001099S

    Article  Google Scholar 

  26. Iskander MF, Smith RL, Andrade AOM, Kimrey H, Wal LM (1994) FDTD simulation of microwave sintering of ceramics in multimode cavities. IEEE Trans Microw Theory Tech 42:793–800. https://doi.org/10.1109/22.293527

    Article  Google Scholar 

  27. Ignatenko M, Tanaka M (2010) Effective permittivity and permeability of coated metal powders at microwave frequency. Phys B Condens Matter 405:352–358. https://doi.org/10.1016/j.physb.2009.08.086

    Article  Google Scholar 

  28. Maxim I, Tanaka M (2011) Numerical analysis of the microwave heating of compacted copper powders in single-mode cavity. Jpn J Appl Phys 50. https://doi.org/10.1143/JJAP.50.097302

  29. Birnboim A, Carmel Y (1999) Simulation of microwave sintering of ceramic bodies with complex geometry. J Am Ceram Soc 82:3024–3030. https://doi.org/10.1109/PLASMA.1999.829397

    Article  Google Scholar 

  30. Ma J, Diehl JF, Johnson EJ, Martin KR, Miskovsky NM, Smith CT, Weisel GJ, Weiss BL, Zimmerman DT (2007) Systematic study of microwave absorption, heating, and microstructure evolution of porous copper powder metal compacts. J Appl Phys 101:074906. https://doi.org/10.1063/1.2713087

    Article  Google Scholar 

  31. Thostenson ET, Chou T-W (1999) Microwave processing: fundamentals and applications. Compos Part A Appl Sci Manuf 30:1055–1071. https://doi.org/10.1016/S1359-835X(99)00020-2

    Article  Google Scholar 

  32. Haque KE (1999) Microwave energy for mineral treatment processes—a brief review. Int J Miner Process 57:1–24. https://doi.org/10.1016/S0301-7516(99)00009-5

    Article  Google Scholar 

  33. Walkiewicz JW, Kazonich G, McGill SL (1988) Microwave heating characteristics of selected minerals and compounds. Miner Metall Process 5:39–42

    Google Scholar 

  34. Akinwekomi AD, Tang C, Tsui GC et al (2018) Synthesis and characterisation of floatable magnesium alloy syntactic foams with hybridised cell morphology. Mater Des 160:591–600. https://doi.org/10.1016/j.matdes.2018.10.004

    Article  Google Scholar 

  35. Duan Y, Sorescu DC, Johnson JK (2006) Finite element approach to microwave sintering of oxide materials. In: Proceedings of the COMSOL Conference. COMSOL, Boston, pp 2–7

    Google Scholar 

  36. Lasri J, Ramesh PD, Schächter L (2000) Energy conversion during microwave sintering of a multiphase ceramic surrounded by a susceptor. J Am Ceram Soc 83:1465–1468. https://doi.org/10.1111/j.1151-2916.2000.tb01411.x

    Article  Google Scholar 

  37. German RM (1996) Sintering theory and practice. Wiley, New York

    Google Scholar 

  38. COMSOL Inc (2016) COMSOL Multiphysics® Modeling Software

  39. Zhang L, Zhu H (2009) Dielectric, magnetic, and microwave absorbing properties of multi-walled carbon nanotubes filled with Sm2O3 nanoparticles. Mater Lett 63:272–274. https://doi.org/10.1016/j.matlet.2008.10.015

    Article  Google Scholar 

  40. Gupta M, Wong WLE (2007) Microwaves and metals. Wiley (Asia) Pte Ltd., Singapore

    Book  Google Scholar 

  41. Friedrich HE, Mordike BL (2006) Magnesium technology: metallurgy, design data, applications. Springer-Verlag, Berlin

    Google Scholar 

  42. Lee S, Ham HJ, Kwon SY, Kim SW, Suh CM (2013) Thermal conductivity of magnesium alloys in the temperature range from −125 °C to 400 °C. Int J Thermophys 34:2343–2350. https://doi.org/10.1007/s10765-011-1145-1

    Article  Google Scholar 

  43. ASM International (2002) ASM ready reference: thermal properties of metals. ASM International

  44. Avedesian MM, Baker H (1999) ASM specialty handbook: magnesium and magnesium alloys. ASM International

  45. Optotherm Emissivity Table. http://www.optotherm.com/emiss-table.htm. Accessed 21 Jun 2016

  46. Wong WLE, Gupta M (2007) Development of Mg/Cu nanocomposites using microwave assisted rapid sintering. Compos Sci Technol 67:1541–1552. https://doi.org/10.1016/j.compscitech.2006.07.015

    Article  Google Scholar 

  47. Gupta M, Sharon NML (2011) Magnesium, magnesium alloys, and magnesium composites. Wiley, Inc., Hoboken

    Book  Google Scholar 

  48. Čapek J, Vojtěch D (2014) Effect of sintering conditions on the microstructural and mechanical characteristics of porous magnesium materials prepared by powder metallurgy. Mater Sci Eng C 35:21–28. https://doi.org/10.1016/j.msec.2013.10.014

    Article  Google Scholar 

Download references

Funding

This study was supported by both the Research Committee of the Hong Kong Polytechnic University (student account code: RK20) and the Hong Kong PhD Fellowship Scheme (Project Code: 1-904Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akeem Damilola Akinwekomi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akinwekomi, A.D., Yeung, KW., Tang, CY. et al. Finite element simulation of hybrid microwave sintering based on power approach. Int J Adv Manuf Technol 110, 2503–2515 (2020). https://doi.org/10.1007/s00170-020-05952-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05952-0

Keywords

Navigation