Skip to main content
Log in

Effects of lubricant on cutting performance in single-point diamond turning of ferrous metal NAK 80

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In the ultra-precision machining field, ferrous metal machining is an important and practical research topic. However, lubricant effects, especially in tool wear reduction, have yet to be researched regarding the single-point diamond turning of ferrous metals. In this research, tool wear patterns, chip characteristics, and surface topography are investigated through cutting experiments that implemented two lubricant conditions, ordinary dry machining (ODM) and machining with minimum quantity lubrication (MQL), to determine the eco-friendly cutting condition effects on cutting performance in the diamond turning of NAK 80. Results show that MQL conditions achieve a higher tool wear rate than ODM. Furthermore, tool selection and lubricant components are also explored. The results, which tool wear was significantly worse under the MQL conditions than under the ODM conditions, are neither accidental nor related to the lubricant composition. Under the ODM conditions, the machined surface micro-hardness is higher and the cutting chips are both more complete and stable. Results suggest that chemical aspects caused the essential tool wear under the MQL conditions and that chemical tool wear is greater under the MQL conditions than under the ODM conditions. This indicates that the presence of lubricant is the root cause of catastrophic tool wear under the MQL conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wojciechowski S, Matuszak M, Powalka B, Madajewski M, Maruda RW, Krolczyk GM (2019) Prediction of cutting forces during micro end milling considering chip thickness accumulation. Int J Mach Tools Manuf 147:26. https://doi.org/10.1016/j.ijmachtools.2019.103466

    Article  Google Scholar 

  2. Xiao GB, To S, Zhang GQ (2015) Molecular dynamics modelling of brittle-ductile cutting mode transition: case study on silicon carbide. Int J Mach Tools Manuf 88:214–222. https://doi.org/10.1016/j.ijmachtools.2014.10.007

    Article  Google Scholar 

  3. Mia M, Krolczyk G, Maruda R, Wojciechowski S (2019) Intelligent optimization of hard-turning parameters using evolutionary algorithms for smart manufacturing. Materials 12(6):12. https://doi.org/10.3390/ma12060879

    Article  Google Scholar 

  4. Paul E, Evans CJ, Mangamelli A, McGlauflin ML, Polavani RS (1996) Chemical aspects of tool wear in single point diamond turning. Precis Eng-J Int Soc Precis Eng Nanotechnol 18(1):4–19. https://doi.org/10.1016/0141-6359(95)00019-4

    Article  Google Scholar 

  5. Li ZJ, Fang FZ, Gong H, Zhang XD (2013) Review of diamond-cutting ferrous metals. Int J Adv Manuf Technol 68(5–8):1717–1731. https://doi.org/10.1007/s00170-013-4970-5

    Article  Google Scholar 

  6. Zhang SJ, To S, Zhang GQ (2017) Diamond tool wear in ultra-precision machining. Int J Adv Manuf Technol 88(1–4):613–641. https://doi.org/10.1007/s00170-016-8751-9

    Article  Google Scholar 

  7. Brehl DE, Dow TA (2008) Review of vibration-assisted machining. Precis Eng-J Int Soc Precis Eng Nanotechnol 32(3):153–172. https://doi.org/10.1016/j.precisioneng.2007.08.003

    Article  Google Scholar 

  8. Huang S, Liu X, Chen FZ, Zheng HX, Yang XL, Wu LB, Song JL, Xu WJ (2016) Diamond-cutting ferrous metals assisted by cold plasma and ultrasonic elliptical vibration. Int J Adv Manuf Technol 85(1–4):673–681. https://doi.org/10.1007/s00170-015-7912-6

    Article  Google Scholar 

  9. Zhang XQ, Deng H, Liu K (2019) Oxygen-shielded ultrasonic vibration cutting to suppress the chemical wear of diamond tools. CIRP Ann-Manuf Technol 68(1):69–72. https://doi.org/10.1016/j.cirp.2019.04.026

    Article  Google Scholar 

  10. Shokrani A, Dhokia V, Munoz-Escalona P, Newman S (2013) State-of-the-art cryogenic machining and processing. Int J Comput Integr Manuf 26(7):616–648. https://doi.org/10.1080/0951192x.2012.749531

    Article  Google Scholar 

  11. Lee YJ, Hao L, Luder J, Chaudhari A, Wang SY, Manzhos S, Wang H (2019) Micromachining of ferrous metal with an ion implanted diamond cutting tool. Carbon 152:598–608. https://doi.org/10.1016/j.carbon.2019.06.043

    Article  Google Scholar 

  12. Najar KA, Butt MM (2019) Development of a dual-layered diamond-coated WC-Co cutting tool for enhancing tool life in the dry machining of mild-steel alloy. Proc Inst Mech Eng Part B-J Eng Manuf 233(5):1515–1528. https://doi.org/10.1177/0954405418780179

    Article  Google Scholar 

  13. Przestacki D, Chwalczuk T, Wojciechowski S (2017) The study on minimum uncut chip thickness and cutting forces during laser-assisted turning of WC/NiCr clad layers. Int J Adv Manuf Technol 91(9–12):3887–3898. https://doi.org/10.1007/s00170-017-0035-5

    Article  Google Scholar 

  14. Shimada S, Tanaka H, Higuchi M, Yamaguchi T, Honda S, Obata K (2004) Thermo-chemical wear mechanism of diamond tool in machining of ferrous metals. CIRP Ann-Manuf Technol 53(1):57–60. https://doi.org/10.1016/s0007-8506(07)60644-1

    Article  Google Scholar 

  15. Zou L, Yin JC, Huang Y, Zhou M (2018) Essential causes for tool wear of single crystal diamond in ultra-precision cutting of ferrous metals. Diam Relat Mat 86:29–40. https://doi.org/10.1016/j.diamond.2018.04.012

    Article  Google Scholar 

  16. Attanasio A, Gelfi M, Giardini C, Remino C (2006) Minimal quantity lubrication in turning: effect on tool wear. Wear 260(3):333–338. https://doi.org/10.1016/j.wear.2005.04.024

    Article  Google Scholar 

  17. Aramcharoen A (2016) Influence of cryogenic cooling on tool wear and chip formation in turning of titanium alloy. In: Wertheim R, Ihlefeldt S, Hochmuth C, Putz M (eds) 7th Hpc 2016 - Cirp conference on high performance cutting, vol 46, Procedia CIRP. Elsevier Science Bv, Amsterdam, pp 83–86. https://doi.org/10.1016/j.procir.2016.03.184

    Chapter  Google Scholar 

  18. Bennett EO (1983) Water based cutting fluids and human health. Tribol Int 16(3):133–136. https://doi.org/10.1016/0301-679x(83)90055-5

    Article  Google Scholar 

  19. Huang P, Li HC, Zhu WL, Wang HT, Zhang GQ, Wu XY, To SE, Zhu ZW (2020) Effects of eco-friendly cooling strategy on machining performance in micro-scale diamond turning of Ti-6Al-4V. J Clean Prod 243:9. https://doi.org/10.1016/j.jclepro.2019.118526

    Article  Google Scholar 

  20. Kai Cheng, Dehong Huo(editors) (2013) Micro-cutting: fundamentals and applications. John Wiley & Sons, Ltd

  21. Zong WJ, Wu D, Yao XL, Sun T (2016) Strength dependent evaluation method for the wear resistance of multifaceted diamond Berkovich indenter in scratch test. J Mater Process Technol 234:45–57. https://doi.org/10.1016/j.jmatprotec.2016.03.005

    Article  Google Scholar 

  22. Zong WJ, Li ZQ, Sun T, Li D, Cheng K (2010) Analysis for the wear resistance anisotropy of diamond cutting tools in theory and experiment. J Mater Process Technol 210(6–7):858–867. https://doi.org/10.1016/j.jmatprotec.2010.01.018

    Article  Google Scholar 

  23. Thornton AG, Wilks J (1978) Clean surface-reactions between diamond and steel. Nature 274(5673):792–793. https://doi.org/10.1038/274792a0

    Article  Google Scholar 

  24. Casstevens JM (1983) Diamond turning of steel in carbon-saturated atmospheres. Precis Eng-J Am Soc Precis Eng 5(1):9–15. https://doi.org/10.1016/0141-6359(83)90063-6

    Article  Google Scholar 

  25. Xavior MA, Manohar M, Madhukar PM, Jeyapandiarajan P (2017) Experimental investigation of work hardening, residual stress and microstructure during machining Inconel 718. J Mech Sci Technol 31(10):4789–4794. https://doi.org/10.1007/s12206-017-0926-2

    Article  Google Scholar 

  26. Ulutan D, Ozel T (2011) Machining induced surface integrity in titanium and nickel alloys: a review. Int J Mach Tools Manuf 51(3):250–280. https://doi.org/10.1016/j.ijmachtools.2010.11.003

    Article  Google Scholar 

  27. Wang YL, Suzuki N, Shamoto E, Zhao QL (2011) Investigation of tool wear suppression in ultraprecision diamond machining of die steel. Precis Eng-J Int Soc Precis Eng Nanotechnol 35(4):677–685. https://doi.org/10.1016/j.precisioneng.2011.05.003

    Article  Google Scholar 

  28. Putz M, Dix M, Neubert M, Schmidt T (2016) Mechanism of cutting elastomers with cryogenic cooling. CIRP Ann-Manuf Technol 65(1):73–76. https://doi.org/10.1016/j.cirp.2016.04.075

    Article  Google Scholar 

  29. Zhu WL, Duan F, Zhang XD, Zhu ZW, Ju BF (2018) A new diamond machining approach for extendable fabrication of micro-freeform lens array. Int J Mach Tools Manuf 124:134–148. https://doi.org/10.1016/j.ijmachtools.2017.10.007

    Article  Google Scholar 

Download references

Funding

The research proposed in this paper was supported by the National Natural Science Foundation of China Major Research Instrument Development Projects (Grant No. 51827901), the Natural Science Foundation of Guangdong Province (Grant No.2017A030313295), the Shenzhen Science and Technology Program (Grant No. JCYJ20170818135756874), the Shenzhen Peacock Technology Innovation Project (Grant No. KQJSCX20170727101318462), and the Open Project of State Key Laboratory of Superhard Materials, Jilin University (Grant No. 201912).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoqing Zhang or Ning Chen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Zhang, G. & Chen, N. Effects of lubricant on cutting performance in single-point diamond turning of ferrous metal NAK 80. Int J Adv Manuf Technol 109, 2549–2558 (2020). https://doi.org/10.1007/s00170-020-05826-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05826-5

Keywords

Navigation