Skip to main content
Log in

A review: development of the maskless localized electrochemical deposition technology

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Presented in 1996, maskless localized electrochemical deposition (LECD) is an emerging and unconventional manufacturing technology that originated from precision electroforming and electroplating. As a novel additive manufacturing technology, it forms a three-dimensional structure layer by layer at atomic scale. In this work, we present a review of the theoretical basis and key parameters of maskless LECD technology. LECD process, almost limited to linear structure-based depositions, is capable of creating structures with high aspect ratio up to 280. However, the degree of deposition accuracy is not satisfactory during the whole process. Besides, the deposition rate is rather slow and the highest deposition rate of 25 μm/s was reported in published literature. Moreover, not all metals can be deposited due to the limitations of the electrochemical discipline. For instance, the effects of interelectrode potential difference, interelectrode gap, scanning speed, electrolyte concentration, and energy field on the quality of maskless LECD were discussed. Although all parameters abovementioned have an effect on the deposition results, there is currently no optimization software that can calculate the optimal values in an effective manner. By combining different deposition structures, special tiny part systems can be generated or integrated into devices for tackling current and future challenges in some fields such as electronic circuits, microfluidics, communications, and biomedical aspect. Additionally, this work also introduces main hybrid variants of LECD. Possible future efforts to fully exploit LECD potential are also discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Uhlmann E, Mullany B, Biermann D, Rajurkar KP, Hausotte T, Brinksmeier E (2016) Process chains for high-precision components with micro-scale features. CIRP Ann 65(2):549–572

    Google Scholar 

  2. Suryavanshi AP, Yu MF (2006) Probe-based electrochemical fabrication of freestanding Cu nanowire array. Appl Phys Lett 88(8):083103–083101

    Google Scholar 

  3. Giannatsis J, Dedoussis V (2007) Additive fabrication technologies applied to medicine and health care: a review. Int J Adv Manuf Tech 40(1–2):116–127

    Google Scholar 

  4. Kamaraj A, Lewis S, Sundaram M (2016) Numerical study of localized electrochemical deposition for micro electrochemical additive manufacturing. Procedia CIRP 42:788–792

    Google Scholar 

  5. Said RA (2004) Localized electro-deposition (LED): the march toward process development. Nanotechnology 15(10):S649–S659

    Google Scholar 

  6. Lin JC, Jang SB, Lee DL, Chen CC, Yeh PC, Chang TK, Yang JH (2005) Fabrication of micrometer Ni columns by continuous and intermittent microanode guided electroplating. J Micromech Microeng 15(12):2405–2413

    Google Scholar 

  7. Brant AM, Sundaram M (2017) A fundamental study of nano electrodeposition using a combined molecular dynamics and quantum mechanical Electron force field approach. Procedia Manuf 10:253–264

    Google Scholar 

  8. Behroozfar A, Daryadel S, Morsali SR, Moreno S, Baniasadi M, Bernal RA, Minary-Jolandan M (2017). Microscale 3D Printing of nanotwinned copper. Adv Mater 30(4):1705107

  9. Daryadel S, Behroozfar A, Morsali SR, Moreno S, Baniasadi M, Bykova J, Bernal RA, Minary-Jolandan M (2018) Localized pulsed electrodeposition process for three-dimensional printing of nanotwinned metallic nanostructures. Nano Lett 18(1):208–214

    Google Scholar 

  10. Morsali R, Qian D, Minary-Jolandan M (2019) Mechanisms of localized pulsed electrodeposition (L-PED) for microscale 3D printing of nanotwinned metals. J Electrochem Soc 166(8):D354–D358

    Google Scholar 

  11. Zhao X, Iyer A, Promoppatum P, Yao SC (2017) Numerical modeling of the thermal behavior and residual stress in the direct metal laser sintering process of titanium alloy products. Addit Manuf 14:126–136

    Google Scholar 

  12. Das S (2003) Physical aspects of process control in selective laser sintering of metals. Adv Eng Mater 5(10):701–711

    Google Scholar 

  13. Vijayaraghavan V, Garg A, Lam JSL, Panda B, Mahapatra SS (2014) Process characterisation of 3D-printed FDM components using improved evolutionary computational approach. Int J Adv Manuf Tech 78(5–8):781–793

    Google Scholar 

  14. Paul BK, Voorakarnam V (2001) Effect of layer thickness and orientation angle on surface roughness in laminated object manufacturing. J Manuf Process 3(2):94–101

    Google Scholar 

  15. Mazumder J, Schifferer A, Choi J (1999) Direct materials deposition-designed macro and microstructure. Mater Res Innov 3(3):118–131

    Google Scholar 

  16. Fowlkes JD, Winkler R, Lewis BB, Stanford MG, Plank H, Rack PD (2016) Simulation-guided 3D nanomanufacturing via focused electron beam induced deposition. ACS Nano 10(6):6163–6172

    Google Scholar 

  17. Skylar-Scott MA, Gunasekaran S, Lewis JA (2016) Laser-assisted direct ink writing of planar and 3D metal architectures. Proc Natl Acad Sci U S A 113(22):6137–6142

    Google Scholar 

  18. Park JU, Hardy M, Kang SJ, Barton K, Adair K, Mukhopadhyay DK, Lee CY, Strano MS, Alleyne AG, Georgiadis JG, Ferreira PM, Rogers JA (2007) High-resolution electrohydrodynamic jet printing. Nat Mater 6(10):782–789

    Google Scholar 

  19. Breckenfeld E, Kim H, Auyeung RC, Pique A (2016) Laser-induced forward transfer of Ag nanopaste. J Vis Exp 109:e53728

    Google Scholar 

  20. Piner RD, Zhu J, Xu F, Hong S, Mirkin CA (1999) “Dip-pen” nanolithography. Science 283(5402):661–663

    Google Scholar 

  21. Meister A, Jeney S, Liley M, Akiyama T, Staufer U, de Rooij NF, Heinzelmann H (2003) Nanoscale dispensing of liquids through cantilevered probes. Microelectron Eng 67-68:644–650

    Google Scholar 

  22. Hartmann-Thompson C, Merrington A, Carver PI, Keeley DL, Rousseau JL, Hucul D, Bruza KJ, Thomas LS, Keinath SE, Nowak RM, Katona DM, Santurri PR (2008) Proton-conducting polyhedral oligosilsesquioxane nanoadditives for sulfonated polyphenylsulfone hydrogen fuel cell proton exchange membranes. J Appl Polym Sci 110(2):958–974

    Google Scholar 

  23. Riddick JC, Haile MA, Wahlde RV, Cole DP, Bamiduro O, Johnson TE (2016) Fractographic analysis of tensile failure of acrylonitrile-butadiene-styrene fabricated by fused deposition modeling. Addit Manuf 11:49–59

    Google Scholar 

  24. Liu Z, Zhan J, Fard M, Davy JL (2016) Acoustic properties of a porous polycarbonate material produced by additive manufacturing. Mater Lett 181:296–299

    Google Scholar 

  25. Zhao J, Swartz LA, Lin WF, Schlenoff PS, Frommer J, Schlenoff JB, Liu GY (2016) Three-dimensional nanoprinting via scanning probe lithography-delivered layer-by-layer deposition. ACS Nano 10(6):5656–5662

    Google Scholar 

  26. Zheng X, Deotte J, Alonso MP, Farquar GR, Weisgraber TH, Gemberling S, Lee H, Fang N, Spadaccini CM (2012) Design and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturing system. Rev Sci Instrum 83(12):125001

    Google Scholar 

  27. Detlef BTW, Wolfram K, Uwe H, Ludwig F (2001) Fabrication of ultrasmall tunnel junctions by electron beam direct-writing. IEEE T Appl Supercon 11(1):373–376

    Google Scholar 

  28. Satoshi K, Sun HB, Tomokazu T, Kenji T (2001) Finer features for functional microdevices. Nature 412(6848):697–698

    Google Scholar 

  29. John DM, Ian WH (1996) Three-Dimensional icrofabrication by localized electrochemical deposition. J Microelectromech S 5(1):24–32

    Google Scholar 

  30. El-Giar EM, Said RA, Bridges GE, Thomson DJ (2000) Localized Electrochemical Deposition of Copper Microstructures. J Electrochem Soc 147(2):586–591

    Google Scholar 

  31. Anders J, G T, Stefan J (2000) High Resolution 3D Microstructures Made by LocalizedElectrodeposition of Nickel. J Electrochem Soc 147(5):1810–1817

    Google Scholar 

  32. Choo SH, Ya JH (2001) Effects of rotor electrode in the fabrication of high aspect ratiomicrostructures by localized electrochemical deposition. J Micromech Microeng 11:435–442

    Google Scholar 

  33. Yeo SH, J HC, a. K HAS (2002) On the effects of ultrasonic vibrations on localized electrochemical deposition. J Micromech Microeng 12:271–279

    Google Scholar 

  34. Yong L, Yunfei Z, Guang Y, Liangqiang P (2003) Localized electrochemical micromachining with gap control. Sensor Actuat A-Phys 108(1-3):144–148

    Google Scholar 

  35. Said RA (2003) Microfabrication by localized electrochemical deposition experimentalinvestigation and theoretical modelling. Nanotechnology 14:523–531

    Google Scholar 

  36. Said RA (2004) Adaptive Tip-Withdrawal Control for Reliable Microfabrication by Localized Electrodeposition. J Microelectromech S 13(5):822–832

    Google Scholar 

  37. Choo JH, Yeo SH, Tan FF (2004) Flexible tooling for localized electrochemical deposition with wire-electrodischarge grinding. Microsyst Technol 10(2):127–136

    Google Scholar 

  38. Chang TK, Lin JC, Yang JH, Yeh PC, Lee DL, Jiang SB (2007) Surface and transverse morphology of micrometer nickel columns fabricated by localized electrochemical deposition. J Micromech Microeng 17(11):2336–2343

    Google Scholar 

  39. Lin JC, Yang JH, Chang TK, Jiang SB (2009) On the structure of micrometer copper features fabricated by intermittent micro-anode guided electroplating. Electrochim Acta 54(24):5703–5708

    Google Scholar 

  40. Sundaram MM, Kamaraj AB, Kumar VS (2014) Mask-Less Electrochemical Additive Manufacturing: A Feasibility Study. J Manuf Sci E-T. Asme 137(2)021006

  41. Hu J, Yu MF (2010) Meniscus-confined three-dimensional electrodeposition for direct writing of wire bonds. Science 329(5989):313–316

    Google Scholar 

  42. Aydemir N, Parcell J, Laslau C, Nieuwoudt M, Williams DE, Travas-Sejdic J (2013) Direct writing of conducting polymers. Macromol Rapid Commun 34(16):1296–1300

    Google Scholar 

  43. Seol SK, Kim D, Lee S, Kim JH, Chang WS, Kim JT (2015) Electrodeposition-based 3D Printing of Metallic Microarchitectures with Controlled Internal Structures. Small 11(32):3896–3902

    Google Scholar 

  44. Yi Z, Guo J, Chen Y, Zhang H, Zhang S, Xu G, Yu M, Cui P (2016) Vertical, capacitive microelectromechanical switches produced via direct writing of copper wires. Microsyst Nanoeng 2:16010. https://doi.org/10.1038/micronano.2016.10

  45. Chen X, Liu X, Childs P, Brandon N, Wu B (2017) A Low Cost Desktop Electrochemical Metal 3D Printer. Adv Mater Technol-US 2(10)

  46. Shim DS (2012) Development of the printing method for electrically conductive material using AFM probe integrated with microelectrode. UNIST

  47. Hirt L, Ihle S, Pan Z (2016) Dorwling-Carter, L, Reiser, A, Wheeler, J. M, Spolenak, R, Voros, J, Zambelli, T., Template-Free 3D Microprinting of Metals Using a Force-Controlled Nanopipette for Layer-by-Layer Electrodeposition. Adv Mater 28(12):2311–2315

    Google Scholar 

  48. Marco R, D O, Scott AB, Alex Z, Jean MJ, Fréchet (2007) Fabrication of magnetic force microscopy probes via localized electrochemical deposition of cobalt. J Vac Sci Technol B 25(5):39–42

    Google Scholar 

  49. Sundaram M, Kamaraj AB, Lillie G (2018) Experimental Study of Localized Electrochemical Deposition of Ni-Cu Alloy Using a Moving Anode. Procedia CIRP 68:227–231

    Google Scholar 

  50. Kamaraj AB, Sundaram M (2019) A mathematical model of the deposition rate and layer height during electrochemical additive manufacturing. Int J Adv Manuf Tech 102(5-8):2367–2374

    Google Scholar 

  51. Sundaram M, Drexelius A, Kamaraj AB (2018) A study on the effect of interelectrode gap in the electrochemical additive manufacturing process. Mach Sci Technol 23(2):232–248

    Google Scholar 

  52. Seol SK, Kim JT, Je JH, Hwu Y, Margaritondo G (2007) Fabrication of Freestanding Metallic Micro Hollow Tubes by Template-Free Localized Electrochemical Deposition. Electrochem Solid-State Lett 10(5):C44–C46

  53. Morsali S, Daryadel S, Zhou Z, Behroozfar A, Qian D, Minary-Jolandan M (2017) Multi-physics simulation of metal printing at micro/nanoscale using meniscus-confined electrodeposition: Effect of environmental humidity. J Appl Phys 121(2). https://doi.org/10.1063/1.4973622

  54. Morsali S, Daryadel S, Zhou Z, Behroozfar A, Baniasadi M, Moreno S, Qian D, Minary-Jolandan M (2017) Multi-physics simulation of metal printing at micro/nanoscale using meniscus-confined electrodeposition: Effect of nozzle speed and diameter. J Appl Phys 121(21)

  55. Kamaraj AB, Sundaram M (2018) A study on the effect of inter-electrode gap and pulse voltage on current density in electrochemical additive manufacturing. J Appl Electrochem 48(4):463–469

    Google Scholar 

  56. Rajput MS, Pandey PM, Jha S (2015) Modelling of high speed selective jet electrodeposition process. J Manuf Process 17:98–107

    Google Scholar 

  57. Volgin VM, Kabanova TB, Davydov AD (2018) Modeling of local maskless electrochemical deposition of metal microcolumns. Chem Eng Sci 183:123–135

    Google Scholar 

  58. Ian WH, O L, Serge RL, John DM (1997) Three dimensional microfabrication by localized electrodeposition and etching. patent

  59. Wang F, Xiao H, He H (2016) Effects of applied potential and the initial gap between electrodes on localized electrochemical deposition of micrometer copper columns. Sci Rep 6:26270

    Google Scholar 

  60. Wang F, Bian H, Xiao Y (2019) Fabrication of Micro-Sized Copper Columns Using Localiz Electrochemical Deposition with a 20μm Diameter Micro Anode. ECS J Solid State Sc 8(4):Ped 223–PedP227

    Google Scholar 

  61. Lin JC, Chang TK, Yang JH, Chen YS, Chuang CL (2010) Localized electrochemical deposition of micrometer copper columns by pulse plating. Electrochim Acta 55(6):1888–1894

    Google Scholar 

  62. Yang JH, Lin JC, Chang TK, Lai GY, Jiang SB (2008) Assessing the degree of localization in localized electrochemical deposition of copper. J Micromech Microeng 18(5)

  63. Brant AM, Sundaram MM, Kamaraj AB (2014) Finite Element Simulation of Localized Electrochemical Deposition for Maskless Electrochemical Additive Manufacturing. J Manuf Sci Eng 137(1)

  64. Thornell G, Jansson A, Johansson SAI (1999) Direct writing of nickel by electrodeposition from various electrolytes. Part of the Conference on Device and Process Technoloçjies for MEMS and Microelectronics 3892:166–175

  65. Seol SK, Pyun AR, Hwu Y (2005) Margaritondo, G, Je, J. H., Localized Electrochemical Deposition of Copper Monitored Using Real-Time X-ray Microradiography. Adv Funct Mater 15(6):934–937

    Google Scholar 

  66. Volgin VM, Lyubimov VV, Gnidina IV, Davydov AD, Kabanova TB (2018) Simulation of Localized Electrodeposition of Microwires and Microtubes. Procedia CIRP 68:242–247

    Google Scholar 

  67. Yeo SH, J HC KSY (2000) Localized Electrochemical Deposition —The Growth Behavior of Nickel Micro-Columns. Proc SPIE 4174:30–39

    Google Scholar 

  68. Brant A, Sundaram M (2016) A Novel Electrochemical Micro Additive Manufacturing Method of Overhanging Metal Parts without Reliance on Support Structures. Procedia Manufacturing 5:928–943

    Google Scholar 

  69. Nelson JB, Wisecarver Z, Schwartz DT (2007) Electrochemical printing: mass transfer effects. J Micromech Microeng 17(6):1192–1199

    Google Scholar 

  70. Lin JC, Chang TK, Yang JH, Jeng JH, Lee DL, Jiang SB (2009) Fabrication of a micrometer Ni–Cu alloy column coupled with a Cu micro-column for thermal measurement. J Micromech Microeng 19(1)

  71. Wang FF, Wang W, He X, Han L, Zhou JZ, Tian ZQ, Tian ZW, Zhan D (2017) Nanofabrication of the gold scanning probe for the STM-SECM coupling system with nanoscale spatial resolution. Sci China Chem 60(5):649–655

    Google Scholar 

  72. El-Giar EM, Thomson DJ (1997) Localized electrochemical plating of interconnectors for microelectronics, IEEE WESCANEX 97 Communications, Power and Computing. Conference Proceedings, Winnipeg, Manitoba, pp 327–332

  73. Pané S, Panagiotopoulou V, Fusco S, Pellicer E, Sort J, Mochnacki D, Sivaraman KM, Kratochvil BE, Baró MD, Nelson BJ (2011) The effect of saccharine on the localized electrochemical deposition of Cu-rich Cu–Ni microcolumns. Electrochem Commun 13(9):973–976

    Google Scholar 

  74. Yang JH, Lin JC, Chang TK, You XB, Jiang SB (2009) Localized Ni deposition improved by saccharin sodium in the intermittent MAGE process. J Micromech Microeng 19(2)

  75. Zhang Z, Jiang Y, Huang L, Nie X, Liu G (2015) Experiment study of laser thermal enhanced electrochemical deposition. Microsyst Technol 23(6):1695–1701

    Google Scholar 

  76. Cho CH, Shin HS, Chu CN (2013) Selective electrodeposition of copper on stainless steel using laser irradiation. Surf Coat Technol 222:15–24

    Google Scholar 

  77. Du L (2016) Improvement of microfulidic chip mould thickness uniformity by ultrasonic agitation during electroforming process. Int J Adv Manuf Technol 28(6) 064111-1-5

  78. Kang H, Hwang S, Kwak J (2015) A hydrogel pen for electrochemical reaction and its applications for 3D printing. Nanoscale 7(3):994–1001

    Google Scholar 

  79. Rajput MS, Pandey PM, Jha S (2013) Micromanufacturing by selective jet electrodeposition process. Int J Adv Manuf Technol 76(1-4):61–67

    Google Scholar 

  80. Hong KC, J UP, O OP, Placid MF, John GG, John AR (2008) Scaling laws for jet pulsations associated with high-resolution electrohydrodynamic printing. Appl Phys Lett 92(92) 123109-1-3

  81. Huang D, Shen L, Chen J, Zhu J (2013) The Influence of Cathode Surface Velocity on Friction Aided Jet Electrodeposition. T Indian I Metals 67(3):351–357

    Google Scholar 

  82. Chouchane S, Levesque A, Zabinski P, Rehamnia R, Chopart JP (2010) Electrochemical corrosion behavior in NaCl medium of zinc–nickel alloys electrodeposited under applied magnetic field. J Alloys Compd 506(2):575–580

    Google Scholar 

  83. Tseng YT, Lin JC, Ciou YJ, Hwang YR (2014) Fabrication of a novel microsensor consisting of electrodeposited ZnO nanorod-coated crossed Cu micropillars and the effects of nanorod coating morphology on the gas sensing. ACS Appl Mater Interfaces 6(14):11424–11438

    Google Scholar 

  84. Hu J (2011) Interfacial Physics In Meniscus-Confined Electrodeposition And Its Applications For Fabricating Electronic Structures. University of Illinois at Urbana-Champaign

  85. Park J, Kim KI, Kim K, Kim DC, Cho D, Lee JH, Jeon S (2015) Rapid, High-Resolution 3D Interference Printing of Multilevel Ultralong Nanochannel Arrays for High-Throughput Nanofluidic Transport. Adv Mater 27(48):8000–8006

    Google Scholar 

  86. McKelvey K, O'Connell MA, Unwin PR (2013) Meniscus confined fabrication of multidimensional conducting polymer nanostructures with scanning electrochemical cell microscopy (SECCM). Chem Commun (Camb) 49(29):2986–2988

    Google Scholar 

  87. Schon P, Geerlings J, Tas N, Sarajlic E (2013) AFM cantilever with in situ renewable mercury microelectrode. Anal Chem 85(19):8937–8942

    Google Scholar 

  88. Mojun C, Z X, Jung HK, Seung KS, Ji TK (2018) Meniscus-on-Demand Parallel 3D Nanoprinting. ACS Nano 12(5):6

    Google Scholar 

  89. Lin YP, Z Y, Yu MF (2018) Parallel Process 3D Metal Microprinting. Adv Mater Technol 1800393, 7

  90. Dermutz H, Gruter RR, Truong AM, Demko LV, ZT J (2014) Local polymer replacement for neuron patterning and in situ neurite guidance. Langmuir 30(23):7037–7046

    Google Scholar 

  91. Mathias JA, H D, Jose FSC, Hana H, László D, Tomaso Z, János V (2015) Local Chemical Stimulation Of Neurons Using Fluidfm Technology Combined With Microelectrode Arrays. 19th International Conference on Miniaturized Systems for Chemistry and. Life Sci:653–655

  92. Meister A, Gabi M, Behr P, Studer P, Voros J, Niedermann P, Bitterli J, Polesel-Maris J, Liley M, Heinzelmann H, Zambelli T (2009) FluidFM: combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond. Nano Lett 9(6):2501–2507

    Google Scholar 

  93. Francisco VDSJ, Liu Y, Wang S, Dorig P, Tonya LK, Frommer J, Liu G (2018) Three-dimensional nanoprinting via direct delivery. J Phys Chem B acs.jpcb.7b06978

  94. Ercolano G, Zambelli T, van N C, M D, V J, M T, Koelmans WW (2019) Multiscale Additive Manufacturing of Metal Microstructures. Adv Eng Mater. https://doi.org/10.1002/adem.201900961

  95. Ercolano G, van N C, Merle T, Voros J, Momotenko D, Koelmans WW, Zambelli T (2019) Additive Manufacturing of Sub-Micron to Sub-mm Metal Structures with Hollow AFM Cantilevers. Micromachines 11(1):6

  96. Whitaker JD, Nelson JB, Schwartz DT (2005) Electrochemical printing: software reconfigurable electrochemical microfabrication. J Micromech Microeng 15(8):1498–1503

    Google Scholar 

  97. Reiser AL, M R, P M, A G, H S, A S, Wheeler JM, Zenobi RP, SR D (2019) Multi-metal electrohydrodynamic redox 3D printing at the submicron scale. Nat Commun 10(1):1853

    Google Scholar 

  98. Lee AY, An JC, K C (2017) Two-Way 4D Printing: A Review on the Reversibility of 3D-Printed Shape Memory Materials. Engineering-PRC 3(5):663–674

    Google Scholar 

Download references

Acknowledgments

This review includes numerous science research literature in electrochemical deposition and additive manufacturing filed. Here, we must express our heartfelt thanks to all the researchers.

Funding

This work was supported by National Key Research and Development Program (No. 2018YFB1107403); The Fund for Equipment Pre-Research (No. 61409230312); China-EU H2020 International Science and Technology Cooperation Programme (FabSurfWAR Nos. 2016YFE0112100 and 644971); Jilin Province Science and Technology Development Program (Nos. 20180201057GX and Z20190101005JH); and the “111” Project of China (No. D17017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinkai Xu or Huadong Yu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Ren, W., Lian, Z. et al. A review: development of the maskless localized electrochemical deposition technology. Int J Adv Manuf Technol 110, 1731–1757 (2020). https://doi.org/10.1007/s00170-020-05799-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05799-5

Keywords

Navigation