Skip to main content
Log in

Evolution of process parameters in friction stir welding of AA6061 aluminum alloy by varying tool eccentricity

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The evolution of processing parameters by varying tool eccentricity in AA6061 alloy friction stir welding was examined using a combination of detailed force/torque measurements and thermal history as well as high-speed camera (HSC) observations. Tri-axial forces show larger oscillations during the steady-state phase of welding if the tool eccentricity is increased. However, the tool torque remains similar for up to 0.4 mm eccentricity versus the aligned tool even with varying weld speed. In situ HSC observation indicates that tool eccentricity is reduced during the welding process for larger eccentric setups. Stir zone thermal measurements reveal that the temperature peaks and stabilizes near the solidus temperature of the AA6061 base material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mishra RS, Mahoney MW (2007) Friction stir welding and processing, 1st edn. ASM International, Materials Park, Ohio

    Google Scholar 

  2. Olea CAW, Roldo L, Strohaecker TR, Dos Santos JF (2006) Friction stir welding of precipitate hardenable aluminium alloys: a review. Weld World 50:78–87. https://doi.org/10.1007/BF03263464

    Article  Google Scholar 

  3. Mishra RS, De PS, Kumar N (2014) Friction stir welding and processing: science and engineering. Springer International Publishing, Switzerland

    Book  Google Scholar 

  4. Hattingh DG, Blignault C, van Niekerk TI, James MN (2008) Characterization of the influences of FSW tool geometry on welding forces and weld tensile strength using an instrumented tool. J Mater Process Technol 203:46–57. https://doi.org/10.1016/j.jmatprotec.2007.10.028

    Article  Google Scholar 

  5. Hattingh DG, Van Niekerk TI, Blignault C et al (2004) Analysis of the FSW force footprint and its relationship with process parameters to optimise weld performance and tool design. Weld World 48:50–58

    Article  Google Scholar 

  6. Reza-E-Rabby M, Tang W, Reynolds AP (2018) Effects of thread interruptions on tool pins in friction stir welding of AA6061. Sci Technol Weld Join 23:114–124. https://doi.org/10.1080/13621718.2017.1341363

    Article  Google Scholar 

  7. Trimble D, Monaghan J, O’Donnell GE (2012) Force generation during friction stir welding of AA2024-T3. CIRP Ann - Manuf Technol 61:9–12. https://doi.org/10.1016/j.cirp.2012.03.024

    Article  Google Scholar 

  8. Shah LH, Walbridge S, Gerlich A (2019) Tool eccentricity in friction stir welding: a comprehensive review. Sci Technol Weld Join 24:566–578. https://doi.org/10.1080/13621718.2019.1573010

    Article  Google Scholar 

  9. Mao Y, Ke L, Liu F, Liu Q, Huang C, Xing L (2014) Effect of tool pin eccentricity on microstructure and mechanical properties in friction stir welded 7075 aluminum alloy thick plate. Mater Des 62:334–343. https://doi.org/10.1016/j.matdes.2014.05.038

    Article  Google Scholar 

  10. Chen Y, Wang H, Wang X, Ding H, Zhao J, Zhang F, Ren Z (2019) Influence of tool pin eccentricity on microstructural evolution and mechanical properties of friction stir processed Al-5052 alloy. Mater Sci Eng A 739:272–276. https://doi.org/10.1016/j.msea.2018.10.057

    Article  Google Scholar 

  11. Amini S, Amiri MR, Barani A (2015) Investigation of the effect of tool geometry on friction stir welding of 5083-O aluminum alloy. Int J Adv Manuf Technol 76:255–261

    Article  Google Scholar 

  12. Shah LH, Guo S, Walbridge S, Gerlich A (2018) Effect of tool eccentricity on the properties of friction stir welded AA6061 aluminum alloys. Manuf Lett 15:14–17. https://doi.org/10.1016/j.mfglet.2017.12.019

    Article  Google Scholar 

  13. Yan JH, Sutton MA, Reynolds AP (2007) Processing and banding in AA2524 and AA2024 friction stir welding. Sci Technol Weld Join 12:390–401. https://doi.org/10.1179/174329307X213639

    Article  Google Scholar 

  14. Zaeh MF, Gebhard P (2010) Dynamical behaviour of machine tools during friction stir welding. Prod Eng Res Dev 4:615–624. https://doi.org/10.1007/s11740-010-0273-y

    Article  Google Scholar 

  15. Gerken JA, Gratzel M, Bergmann JP (2018) Investigation of the material flow during friction stir welding of EN-AW 5754 by multiaxial high resolution process force analysis. In: 12th International Symposium on Friction Stir Welding. Chicoutimi, Canada, pp 1–11

    Google Scholar 

  16. Ahmad Shah LH, Midawi ARH, Walbridge S, Gerlich A (2020) Influence of tool eccentricity on the material flow and microstructural properties of AA6061 aluminum alloy friction stir welds. J Alloys Compd 826:154219. https://doi.org/10.1016/j.jallcom.2020.154219

    Article  Google Scholar 

  17. Ahmad Shah LH, Sonbolestan S, Midawi RH et al (2019) Dissimilar friction stir welding of thick plate AA5052-AA6061 aluminum alloys: effects of material positioning and tool eccentricity. Int J Adv Manuf Technol 105:889–904. https://doi.org/10.1007/s00170-019-04287-9

    Article  Google Scholar 

  18. Shah LH, Huda N, Esmaeili S, Walbridge S, Gerlich AP (2020) Structural morphology of Al-Mg-Si alloy friction stir welds through tool eccentricity. Mater Lett 275:128098. https://doi.org/10.1016/j.matlet.2020.128098

    Article  Google Scholar 

  19. Gadakh VS, Adepu K (2013) Heat generation model for taper cylindrical pin profile in FSW. J Mater Res Technol 2:370–375. https://doi.org/10.1016/j.jmrt.2013.10.003

    Article  Google Scholar 

  20. Reynolds AP (2007) Microstructure development in aluminum alloy friction stir welds. In: Mishra RS, Mahoney MW (eds) Friction stir welding and processing. ASM International, Materials Park, Ohio, pp 59–60

    Google Scholar 

  21. Lambiase F, Paoletti A, Di Ilio A (2018) Forces and temperature variation during friction stir welding of aluminum alloy AA6082-T6. Int J Adv Manuf Technol 99:337–346. https://doi.org/10.1007/s00170-018-2524-6

    Article  Google Scholar 

  22. Yan J, Sutton MA, Reynolds AP (2005) Process – structure – property relationships for nugget and heat affected zone regions of AA2524 – T351 friction stir welds. Sci Technol Weld Join 10:725–736. https://doi.org/10.1179/174329305X68778

  23. Essa ARS, Ahmed MMZ, Mohamed AKYA, El-Nikhaily AE (2016) An analytical model of heat generation for eccentric cylindrical pin in friction stir welding. J Mater Res Technol 5:234–240. https://doi.org/10.1016/j.jmrt.2015.11.009

    Article  Google Scholar 

  24. Mehta M, De A, DebRoy T (2014) Material adhesion and stresses on friction stir welding tool pins. Sci Technol Weld Join 19:534–540. https://doi.org/10.1179/1362171814Y.0000000221

    Article  Google Scholar 

  25. Rai R, De A, Bhadeshia HKDH, DebRoy T (2011) Review: friction stir welding tools. Sci Technol Weld Join 16:325–342. https://doi.org/10.1179/1362171811Y.0000000023

    Article  Google Scholar 

  26. Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R 50:1–78. https://doi.org/10.1016/j.mser.2005.07.001

    Article  Google Scholar 

  27. Elangovan K, Balasubramanian V (2007) Influences of pin profile and rotational speed of the tool on the formation of friction stir processing zone in AA2219 aluminium alloy. Mater Sci Eng A 459:7–18. https://doi.org/10.1016/j.msea.2006.12.124

    Article  Google Scholar 

  28. Mehta M, Chatterjee K, De A (2013) Monitoring torque and traverse force in friction stir welding from input electrical signatures of driving motors. Sci Technol Weld Join 18:191–197. https://doi.org/10.1179/1362171812Y.0000000084

    Article  Google Scholar 

  29. Harish R, Chandan R, Prahalad W, Shivappa HA (2015) Design and analysis of machine tool spindle for special purpose machines ( SPM ) and standardizing the design using Autodesk inventor ( I-logic ). Int J Ignited Minds 2:193–202

    Google Scholar 

  30. Upadhyay P, Reynolds AP (2010) Effects of thermal boundary conditions in friction stir welded AA7050-T7 sheets. Mater Sci Eng A 527:1537–1543. https://doi.org/10.1016/j.msea.2009.10.039

    Article  Google Scholar 

  31. Firouzdor V, Kou S (2010) Al-to-Mg friction stir welding: effect of material position, travel speed, and rotation speed. Metall Mater Trans A Phys Metall Mater Sci 41:2914–2935. https://doi.org/10.1007/s11661-010-0340-1

    Article  Google Scholar 

  32. Gerlich A, Yamamoto M, North TH (2008) Local melting and tool slippage during friction stir spot welding of Al-alloys. J Mater Sci 43:2–11. https://doi.org/10.1007/s10853-007-1791-7

    Article  Google Scholar 

  33. Gerlich A, Su P, Yamamoto M, North TH (2007) Effect of welding parameters on the strain rate and microstructure of friction stir spot welded 2024 aluminum alloy. J Mater Sci 42:5589–5601. https://doi.org/10.1007/s10853-006-1103-7

    Article  Google Scholar 

  34. Gerlich A, Avramovic-Cingara G, North TH (2006) Stir zone microstructure and strain rate during Al 7075-T6 friction stir spot welding. Metall Mater Trans A Phys Metall Mater Sci 37:2773–2786. https://doi.org/10.1007/BF02586110

    Article  Google Scholar 

  35. Yamamoto M, Gerlich A, North TH, Shinozaki K (2008) Cracking and local melting in Mg-alloy and Al-alloy during friction stir spot welding. Weld World 52:38–46. https://doi.org/10.1007/BF03266667

    Article  Google Scholar 

  36. Schneider J, Beshears R, Nunes AC (2006) Interfacial sticking and slipping in the friction stir welding process. Mater Sci Eng A 435–436:297–304. https://doi.org/10.1016/j.msea.2006.07.082

    Article  Google Scholar 

  37. Kou S (2003) Welding metallurgy, 2nd Editio. John Wiley & Sons, New Jersey

    Google Scholar 

  38. Gerlich A, Su P, North TH (2005) Peak temperatures and microstructures in aluminium and magnesium alloy friction stir spot welds. Sci Technol Weld Join 10:647–652. https://doi.org/10.1179/174329305X48383

    Article  Google Scholar 

  39. Venkateswaran P, Reynolds AP (2012) Factors affecting the properties of friction stir welds between aluminum and magnesium alloys. Mater Sci Eng A 545:26–37. https://doi.org/10.1016/j.msea.2012.02.069

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Alexandre Maltais and Guillaume Bonneau for conducting the friction stir welding and high-speed camera experiments in CSFM.

Funding

This work was supported by the National Science and Engineering Research Council of Canada; Ministry of Education, Malaysia; and Universiti Malaysia Pahang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. H. Shah.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, L.H., Fleury, A., St-George, L. et al. Evolution of process parameters in friction stir welding of AA6061 aluminum alloy by varying tool eccentricity. Int J Adv Manuf Technol 109, 1601–1612 (2020). https://doi.org/10.1007/s00170-020-05754-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05754-4

Keywords

Navigation