Skip to main content
Log in

A study of the heat transfer mechanism in resistance spot welding of aluminum alloys AA5182 and AA6014

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This work investigates heat transfer mechanism of aluminum resistance spot welding process. The main target is to determine thermal contact conductance and heat transfer coefficients for natural convection and thermal radiation at ambient air and forced convection inside the water-cooled electrodes. For this purpose, the heat transfer of hot sheets in a welding gun for aluminum alloys AA5182 and AA6014 is analyzed experimentally and numerically. The transient temperature field is measured by several thermocouples in a simplified experimental setup. Subsequent thermal-mechanical coupled finite element simulations of the experiments were used to calibrate the heat transfer coefficients. The heat transfer coefficient for natural convection and thermal radiation to ambient air is 13 \(\mathrm {\frac {W}{m^{2} K}}\) and the heat transfer coefficient for forced convection of electrode water-cooling is 25,000 \(\mathrm {\frac {W}{m^{2} K}}\). The results indicate that the thermal contact conductance can be assumed ideal for welding process. Additionally, the finite element model is validated by the measured and calculated dissipated heat due to forced convection. Finally, a sensitivity analysis is performed to compare the influence of maximum and minimum heat transfer coefficients of forced convection (water-cooling) on transient temperature field and dissipated heat of sample AA5182.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Manladan SM, Yusof F, Ramesh S, Fadzil M, Luo Z, Ao S (2017) A review on resistance spot welding of aluminum alloys. Int J Adv Manuf Technol 90:605–634

    Article  Google Scholar 

  2. Dilthey U (2006) Schweißtechnische Fertigungsverfahren - 1 Schweiß- und Schneidtechnologien, 3rd edn. Springer, Berlin

    Google Scholar 

  3. Phillips DH (2016) Welding engineering—an introduction. Wiley, New York

    Book  Google Scholar 

  4. DVS-Merkblatt 2902-1 (2001) DVS-Merkblatt 2902-1: Widerstandspunktschweißen von Stählen bis 3 mm Einzeldicke - Übersicht

  5. Karimi MR, Sedighi M, Afshari D (2015) Thermal contact conductance effect in modeling of resistance spot welding process of aluminum alloy 6061-T6. Int J Adv Manuf Technol 77:885–895

    Article  Google Scholar 

  6. Khan JA, Broach K, Arefin Kabir AAS (2000) Numerical thermal model of resistance spot welding in aluminum. J Thermophys Heat Tr 14(1):88–95

    Article  Google Scholar 

  7. Wan Z, Wang H-P, Wang M, Carlson BE, Sigler DR (2016) Numerical simulation of resistance spot welding of Al to zinc-coated steel with improved representation of contact interactions. Int J Heat Mass Tran 101:749–763

    Article  Google Scholar 

  8. Greitmann MJ (2002) Grundlegende Untersuchung zur Kontaktsituation beim Widerstandspunktschweißen - Abschlussbericht. Forschungsvorhaben AIF-Nr. 12.617N / DVS-Nr. 4.023, Staatliche Materialprüfungsanstalt (MPA) Universität Stuttgart

  9. Browne DJ, Chandler HW, Evans JT, Wen J (1995) Computer simulation of resistance spot welding in aluminum: part l. Weld J 74(10):339–344

    Google Scholar 

  10. Moshayedi H, Sattari-Far I (2012) Numerical and experimental study of nugget size growth in resistance spot welding of austenitic stainless steels. J Mater Process Technol 212(2):347–354

    Article  Google Scholar 

  11. Luo Z, Yan F, Li Y, Bai Y, Yao Q, Tan H (2015) Numerical and experimental study on nugget formation process in resistance spot welding of aluminum alloy. Trans Tianjin Univ 21(2):135–139

    Article  Google Scholar 

  12. Mirzaei F, Ghorbani H, Kolahan F (2017) Numerical modeling and optimization of joint strength in resistance spot welding of galvanized steel sheets. Int J Adv Manuf Technol 92:3489–3501

    Article  Google Scholar 

  13. Wang J, Wang HP, Lu F, Carlson BE, Sigler DR (2015) Analysis of Al-steel resistance spot welding process by developing a fully coupled multi-physics simulation model. Int J Heat Mass Tran 89:1061–1072

    Article  Google Scholar 

  14. Gupta OP, De A (1998) An improved numerical modeling for resistance spot welding process and its experimental verification. J Manuf Sci Eng 120(2):246–251

    Article  Google Scholar 

  15. Kaars J (2017) Zur Thermomechanik des Widerstandspunktschweißens von Vergütungsstahl am Blechstoß mit Spalt. Dissertation, TU Chemnitz

  16. Piott M, Werber A, Schleuss L, Doynov N, Ossenbrink R, Michailov V G (2019) Electrical contact resistance model for aluminum resistance spot welding. In: Sommitsch C, Enzinger N, Mayr P (eds) Mathematical modelling of weld phenomena 12, Verlag der Technischen Universität Graz, pp 711–728

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Piott.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piott, M., Werber, A., Schleuss, L. et al. A study of the heat transfer mechanism in resistance spot welding of aluminum alloys AA5182 and AA6014. Int J Adv Manuf Technol 111, 263–271 (2020). https://doi.org/10.1007/s00170-020-05650-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05650-x

Keywords

Navigation