Skip to main content
Log in

Effect of post-weld heat treatment on microstructure and mechanical properties of deep penetration autogenous TIG-welded dissimilar joint between creep strength enhanced ferritic steel and austenitic stainless steel

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The present study centres on the effect of post-weld heat treatment (PWHT) on microstructure and mechanical properties of the deep penetration keyhole Tungsten Inert Gas (K-TIG) welded dissimilar joint between creep strength enhanced ferritic (CSEF) steel and austenitic stainless steel (ASS). The as-received normalized and tempered CSEF steel was joined with ASS in a single pass without using any filler materials and edge preparation. Detailed characterization across the welded joint was conducted using stereomicroscope, electron microscopy, energy dispersive spectroscopy (EDS), electron backscattered diffraction (EBSD), hardness test, tensile test and Charpy impact test. Results showed that PWHT had significant effect on the microstructure and mechanical properties of both the weld metal and CSEF steel heat-affected zone (HAZ), while it had little influence on the ASS side. By using proper PWHT, the hardness gradient across the welded joint could be mitigated and toughness in both the weld metal and the CSEF steel HAZ could be restored. 760 °C was considered the most appropriate PWHT temperature for such dissimilar joint in terms of the overall mechanical properties. The tensile properties of K-TIG welded joint after PWHT were comparable to both friction stir welded joint and laser and/or electron beam welded joint, indicating that deep penetration TIG welding technology may provide a good alternative for the nuclear industry. The correlation among welding thermal cycle, various heat treatment, microstructure evolution and mechanical properties was also analysed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Coussement C, Dhooge A, Dewitte M, Dobbelaere R, Vanderdonckt E (1991) High-temperature properties of improved 9-percent Cr steel weldments. Int J Press Vessel Pip 45(2):163–178. https://doi.org/10.1016/0308-0161(91)90090-O

    Article  Google Scholar 

  2. Pandey C, Mahapatra MM, Kumar P, Saini N (2017) Effect of creep phenomena on room-temperature tensile properties of cast & forged P91 steel. Eng Fail Anal 79:385–396. https://doi.org/10.1016/j.engfailanal.2017.05.025

    Article  Google Scholar 

  3. Ennis PJ, Czyrska-Filemonowicz A (2003) Recent advances in creep-resistant steels for power plant applications. Sadhana 28(3):709–730. https://doi.org/10.1007/Bf02706455

    Article  Google Scholar 

  4. Pandey C, Mahapatra MM, Kumar P, Saini N (2018) Some studies on P91 steel and their weldments. J Alloys Compd 743:332–364. https://doi.org/10.1016/j.jallcom.2018.01.120

    Article  Google Scholar 

  5. Vaillant JC, Vandenberghe B, Hahn B, Heuser H, Jochum C (2008) T/P23, 24, 911 and 92: new grades for advanced coal-fired power plants—properties and experience. Int J Press Vessel Pip 85(1–2):38–46. https://doi.org/10.1016/j.ijpvp.2007.06.011

    Article  Google Scholar 

  6. Kihara S, Newkirk JB, Ohtomo A, Saiga Y (1980) Morphological changes of carbides during creep and their effects on the creep properties of inconel 617 at 1000 °C. Metall Trans A 11(6):1019–1031. https://doi.org/10.1007/bf02654716

    Article  Google Scholar 

  7. Akram J, Kalvala PR, Misra M, Charit I (2017) Creep behavior of dissimilar metal weld joints between P91 and AISI 304. Mater Sci Eng A 688:396–406. https://doi.org/10.1016/j.msea.2017.02.026

    Article  Google Scholar 

  8. Vijayanand VD, Vanaja J, Das CR, Mariappan K, Thakur A, Hussain S, Reddy GVP, Sasikala G, Albert SK (2019) An investigation of microstructural evolution in electron beam welded RAFM steel and 316LN SS dissimilar joint under creep loading conditions. Mater Sci Eng A 742:432–441. https://doi.org/10.1016/j.msea.2018.11.046

    Article  Google Scholar 

  9. Bhaduri AK, Venkadesan S, Rodriguez P, Mukunda PG (1994) Transition metal joints for steam generators—an overview. Int J Press Vessel Pip 58(3):251–265. https://doi.org/10.1016/0308-0161(94)90061-2

    Article  Google Scholar 

  10. Rowcliffe AF, Mansur LK, Hoelzer DT, Nanstad RK (2009) Perspectives on radiation effects in nickel-base alloys for applications in advanced reactors. J Nucl Mater 392(2):341–352. https://doi.org/10.1016/j.jnucmat.2009.03.023

    Article  Google Scholar 

  11. Thomas Paul V, Karthikeyan T, Dasgupta A, Sudha C, Hajra RN, Albert SK, Saroja S, Jayakumar T (2015) Microstructural variations across a dissimilar 316L austenitic: 9Cr reduced activation ferritic martensitic steel weld joint. Metall Mater Trans A 47(3):1153–1168. https://doi.org/10.1007/s11661-015-3281-x

    Article  Google Scholar 

  12. Tanigawa H, Shiba K, Sakasegawa H, Hirose T, Jitsukawa S (2011) Technical issues related to the development of reduced-activation ferritic/martensitic steels as structural materials for a fusion blanket system. Fusion Eng Des 86(9–11):2549–2552. https://doi.org/10.1016/j.fusengdes.2011.04.047

    Article  Google Scholar 

  13. Serizawa H, Mori D, Shirai Y, Ogiwara H, Mori H (2013) Weldability of dissimilar joint between F82H and SUS316L under fiber laser welding. Fusion Eng Des 88(9–10):2466–2470. https://doi.org/10.1016/j.fusengdes.2013.03.041

    Article  Google Scholar 

  14. Serizawa H, Mori D, Ogiwara H, Mori H (2014) Effect of laser beam position on mechanical properties of F82H/SUS316L butt-joint welded by fiber laser. Fusion Eng Des 89(7–8):1764–1768. https://doi.org/10.1016/j.fusengdes.2013.12.003

    Article  Google Scholar 

  15. Kano S, Oba A, Yang HL, Matsukawa Y, Satoh Y, Serizawa H, Sakasegawa H, Tanigawa H, Abe H (2016) Microstructure and mechanical property in heat affected zone (HAZ) in F82H jointed with SUS316L by fiber laser welding. Nucl Mater Energy 9:300–305. https://doi.org/10.1016/j.nme.2016.08.004

    Article  Google Scholar 

  16. Fu HY, Nagasaka T, Kometani N, Muroga T, Guan WH, Nogami S, Yabuuchi K, Iwata T, Hasegawa A, Yamazaki M, Kano S, Satoh Y, Abe H, Tanigawa H (2015) Effect of post-weld heat treatment and neutron irradiation on a dissimilar-metal joint between F82H steel and 316L stainless steel. Fusion Eng Des 98-99:1968–1972. https://doi.org/10.1016/j.fusengdes.2015.06.079

    Article  Google Scholar 

  17. Liu GL, Yang SW, Han WT, Zhou LJ, Zhang MQ, Ding JW, Dong Y, Wan FR, Shang CJ, Misra RDK (2018) Microstructural evolution of dissimilar welded joints between reduced-activation ferritic-martensitic steel and 316L stainless steel during the post weld heat treatment. Mater Sci Eng A 722:182–196. https://doi.org/10.1016/j.msea.2018.03.035

    Article  Google Scholar 

  18. Fei ZY, Pan ZX, Cuiuri D, Li HJ, Wu BT, Ding DH, Su LH, Gazder AA (2018) Investigation into the viability of K-TIG for joining armour grade quenched and tempered steel. J Manuf Process 32:482–493. https://doi.org/10.1016/j.jmapro.2018.03.014

    Article  Google Scholar 

  19. Sato YS, Kokawa H, Fujii HT, Yano Y, Sekio Y (2015) Mechanical properties and microstructure of dissimilar friction stir welds of 11Cr-ferritic/martensitic steel to 316 stainless steel. Metall Mater Trans A Phys Metall Mater Sci 46a(12):5789–5800. https://doi.org/10.1007/s11661-015-3152-5

    Article  Google Scholar 

  20. He B, Cui L, Wang DP, Liu YC, Liu CX, Li HJ (2019) The metallurgical bonding and high temperature tensile behaviors of 9Cr-1W steel and 316L steel dissimilar joint by friction stir welding. J Manuf Process 44:241–251. https://doi.org/10.1016/j.jmapro.2019.05.033

    Article  Google Scholar 

  21. Chung YD, Fujii H, Sun YF, Tanigawa H (2011) Interface microstructure evolution of dissimilar friction stir butt welded F82H steel and SUS304. Mater Sci Eng A 528(18):5812–5821. https://doi.org/10.1016/j.msea.2011.04.023

    Article  Google Scholar 

  22. Lathabai S, Jarvis BL, Barton KJ (2001) Comparison of keyhole and conventional gas tungsten arc welds in commercially pure titanium. Mater Sci Eng A 299(1-2):81–93. https://doi.org/10.1016/S0921-5093(00)01408-8

    Article  Google Scholar 

  23. Vasudevan M, Bhaduri AK, Raj B, Rao KP (2007) Genetic-algorithm-based computational models for optimizing the process parameters of A-TIG welding to achieve target bead geometry in type 304 L(N) and 316 L(N) stainless steels. Mater Manuf Process 22(5–6):641–649. https://doi.org/10.1080/10426910701323342

    Article  Google Scholar 

  24. Liu ZM, Fang YX, Qiu JY, Feng MN, Luo Z, Yuan JR (2017) Stabilization of weld pool through jet flow argon gas backing in C-Mn steel keyhole TIG welding. J Mater Process Technol 250:132–143. https://doi.org/10.1016/j.jmatprotec.2017.07.008

    Article  Google Scholar 

  25. Huang YF, Luo Z, Lei YC, Ao SS, Shan H, Zhang Y (2018) Dissimilar joining of AISI 304/Q345 steels in keyhole tungsten inert gas welding process. Int J Adv Manuf Technol 96(9–12):4041–4049. https://doi.org/10.1007/s00170-018-1791-6

    Article  Google Scholar 

  26. Fei ZY, Pan ZX, Cuiuri D, Li HJ, Van Duin S, Yu ZP (2019) Microstructural characterization and mechanical properties of K-TIG welded SAF2205/AISI316L dissimilar joint. J Manuf Process 45:340–355. https://doi.org/10.1016/j.jmapro.2019.07.017

    Article  Google Scholar 

  27. Nayee SG, Badheka VJ (2014) Effect of oxide-based fluxes on mechanical and metallurgical properties of dissimilar activating flux assisted-tungsten inert gas welds. J Manuf Process 16(1):137–143. https://doi.org/10.1016/j.jmapro.2013.11.001

    Article  Google Scholar 

  28. Devendranath Ramkumar K, Bajpai A, Raghuvanshi S, Singh A, Chandrasekhar A, Arivarasu M, Arivazhagan N (2015) Investigations on structure–property relationships of activated flux TIG weldments of super-duplex/austenitic stainless steels. Mater Sci Eng A 638:60–68. https://doi.org/10.1016/j.msea.2015.04.041

    Article  Google Scholar 

  29. Vidyarthy RS, Kulkarni A, Dwivedi DK (2017) Study of microstructure and mechanical property relationships of A-TIG welded P91–316L dissimilar steel joint. Mater Sci Eng A 695:249–257. https://doi.org/10.1016/j.msea.2017.04.038

    Article  Google Scholar 

  30. Sharma P, Dwivedi DK (2019) A-TIG welding of dissimilar P92 steel and 304H austenitic stainless steel: mechanisms, microstructure and mechanical properties. J Manuf Process 44:166–178. https://doi.org/10.1016/j.jmapro.2019.06.003

    Article  Google Scholar 

  31. Soysal T, Kou S, Tat D, Pasang T (2016) Macrosegregation in dissimilar-metal fusion welding. Acta Mater 110:149–160. https://doi.org/10.1016/j.actamat.2016.03.004

    Article  Google Scholar 

  32. Zhang XH, Zeng YP, Cai WH, Wang ZC, Li WL (2018) Study on the softening mechanism of P91 steel. Mater Sci Eng A 728:63–71. https://doi.org/10.1016/j.msea.2018.04.082

    Article  Google Scholar 

  33. Vitek JM, Klueh RL (1983) Precipitation reactions during the heat-treatment of ferritic steels. Metall Trans A 14(6):1047–1055. https://doi.org/10.1007/Bf02670443

    Article  Google Scholar 

  34. Pandey C, Giri A, Mahapatra MM (2016) Evolution of phases in P91 steel in various heat treatment conditions and their effect on microstructure stability and mechanical properties. Mater Sci Eng A 664:58–74. https://doi.org/10.1016/j.msea.2016.03.132

    Article  Google Scholar 

  35. El-Batahgy A-M, Miura T, Ueji R, Fujii H (2016) Investigation into feasibility of FSW process for welding 1600 MPa quenched and tempered steel. Mater Sci Eng A 651:904–913. https://doi.org/10.1016/j.msea.2015.11.054

    Article  Google Scholar 

  36. Luo LB, Li W, Wang L, Zhou S, Jin XJ (2017) Tensile behaviors and deformation mechanism of a medium Mn-TRIP steel at different temperatures. Mater Sci Eng A 682:698–703. https://doi.org/10.1016/j.msea.2016.11.017

    Article  Google Scholar 

  37. Bilmes PD, Solari M, Llorente CL (2001) Characteristics and effects of austenite resulting from tempering of 13Cr–NiMo martensitic steel weld metals. Mater Charact 46(4):285–296. https://doi.org/10.1016/s1044-5803(00)00099-1

    Article  Google Scholar 

  38. Sunilkumar D, Muthukumaran S, Vasudevan M, Reddy MG (2019) Effect of friction stir and activated-GTA welding processes on the 9Cr–1Mo steel to 316LN stainless steel dissimilar weld joints. Sci Technol Weld Join 25(4):311–319. https://doi.org/10.1080/13621718.2019.1695347

    Article  Google Scholar 

  39. Hara N, Nogami S, Nagasaka T, Hasegawa A, Tanigawa H, Muroga T (2009) Mechanical property changes and irradiation hardening due to dissimilar metal welding with reduced activation ferritic/martensitic steel and 316l stainless steel. Fusion Sci Technol 56(1):318–322. https://doi.org/10.13182/Fst09-A8921

    Article  Google Scholar 

  40. Dimmler G, Weinert P, Kozeschnik E, Cerjak H (2003) Quantification of the Laves phase in advanced 9–12% Cr steels using a standard SEM. Mater Charact 51(5):341–352. https://doi.org/10.1016/j.matchar.2004.02.003

    Article  Google Scholar 

  41. Sawada K, Kushima H, Kimura K, Tabuchi M (2007) TTP diagrams of Z phase in 9-12% Cr heat-resistant steels. ISIJ Int 47(5):733–739. https://doi.org/10.2355/isijinternational.47.733

    Article  Google Scholar 

  42. Kwon H (1989) Secondary hardening embrittlement in 4mo-0.3c Steel. Scr Metall 23(6):1001–1004. https://doi.org/10.1016/0036-9748(89)90285-8

    Article  Google Scholar 

  43. da Silva GF, Tavares SSM, Pardal JM, Silva MR, de Abreu HFG (2011) Influence of heat treatments on toughness and sensitization of a Ti-alloyed supermartensitic stainless steel. JMatS 46(24):7737–7744. https://doi.org/10.1007/s10853-011-5753-8

    Article  Google Scholar 

  44. Li JR, Zhang CL, Liu YZ (2016) Influence of carbides on the high-temperature tempered martensite embrittlement of martensitic heat-resistant steels. Mater Sci Eng A 670:256–263. https://doi.org/10.1016/j.msea.2016.06.025

    Article  Google Scholar 

  45. Shiue RK, Lan KC, Chen C (2000) Toughness and austenite stability of modified 9Cr–1Mo welds after tempering. Mater Sci Eng A 287(1):10–16. https://doi.org/10.1016/s0921-5093(00)00831-5

    Article  Google Scholar 

  46. Pandey C, Mahapatra MM, Kumar P, Saini N (2018) Comparative study of autogenous tungsten inert gas welding and tungsten arc welding with filler wire for dissimilar P91 and P92 steel weld joint. Mater Sci Eng A 712:720–737. https://doi.org/10.1016/j.msea.2017.12.039

    Article  Google Scholar 

  47. Wu SP, Wang DP, Zhao C, Zhang Z, Li CN, Di XJ (2018) Enhanced toughness of Fe–12Cr–5.5Ni–Mo-deposited metals through formation of fine reversed austenite. JMatS 53(22):15679–15693. https://doi.org/10.1007/s10853-018-2718-1

    Article  Google Scholar 

  48. Leem D-S, Lee Y-D, Jun J-H, Choi C-S (2001) Amount of retained austenite at room temperature after reverse transformation of martensite to austenite in an Fe–13%Cr–7%Ni–3%Si martensitic stainless steel. Scr Mater 45(7):767–772. https://doi.org/10.1016/s1359-6462(01)01093-4

    Article  Google Scholar 

  49. Niessen F (2018) Austenite reversion in low-carbon martensitic stainless steels – a CALPHAD-assisted review. Mater Sci Technol 34(12):1401–1414. https://doi.org/10.1080/02670836.2018.1449179

    Article  Google Scholar 

  50. Norström LÅ, Vingsbo O (2013) Influence of nickel on toughness and ductile-brittle transition in low-carbon martensite steels. Met Sci 13(12):677–684. https://doi.org/10.1179/030634579790434321

    Article  Google Scholar 

  51. Escobar JD, Poplawsky JD, Faria GA, Rodriguez J, Oliveira JP, Salvador CAF, Mei PR, Babu SS, Ramirez AJ (2018) Compositional analysis on the reverted austenite and tempered martensite in a Ti-stabilized supermartensitic stainless steel: segregation, partitioning and carbide precipitation. Mater Des 140:95–105. https://doi.org/10.1016/j.matdes.2017.11.055

    Article  Google Scholar 

  52. Lee YK, Shin HC, Leem DS, Choi JY, Jin W, Choi CS (2003) Reverse transformation mechanism of martensite to austenite and amount of retained austenite after reverse transformation in Fe-3Si-13Cr-7Ni (wt-%) martensitic stainless steel. Mater Sci Technol 19(3):393–398. https://doi.org/10.1179/026708303225009742

    Article  Google Scholar 

  53. Shi YW, Han ZX (2008) Effect of weld thermal cycle on microstructure and fracture toughness of simulated heat-affected zone for a 800MPa grade high strength low alloy steel. J Mater Process Technol 207(1–3):30–39. https://doi.org/10.1016/j.jmatprotec.2007.12.049

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the use of the facilities within the UOW Electron Microscopy Centre. Special acknowledgements will be given to Wuhan Heavy Industry Casting & Forging Co., Ltd. for providing experimental materials.

Availability of data and material

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Funding

This research has been conducted with the support of the Australian Government Research Training Program Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengxi Pan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, Z., Pan, Z., Cuiuri, D. et al. Effect of post-weld heat treatment on microstructure and mechanical properties of deep penetration autogenous TIG-welded dissimilar joint between creep strength enhanced ferritic steel and austenitic stainless steel. Int J Adv Manuf Technol 108, 3207–3229 (2020). https://doi.org/10.1007/s00170-020-05605-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05605-2

Keywords

Navigation