Skip to main content
Log in

Scaling approach towards electrochemical micromachining: a method to evaluate similarity

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The electrochemical micromachining (ECMM) system is a modern equipment well thought out as the phenomenon of conventional electrochemical machining (ECM) system in microscale. The ECM system and ECMM system are similar, but the practice method and mechanism involved in the ECM system are analogous to those of the ECMM system, i.e., the differences in machining conditions and machining performance give rise to a factor called the scale effect. In this paper, ECMM has been applied with the advantageous concept called scale effect. Single factor experiments are conducted in which voltage, duty ratio, and tool feed rate are considered as the input factors for the exploration of the different grades of scale effect through the material removal rate, circularity, and overcut. The scale effects that occurred during machining are found using the similarity precision of the micro- and macrosystems based on the similarity theory. Quantitative evaluation of the scale effects is done for the ECMM process. The evaluation showed greater similarity precision indicating a larger significant scale effect. The output values of MRR, circularity, and overcut were normalized which also showed a positive scale effect. The research on scale effects delivers benefits in engineering such as optimizing the processing parameters involved and improving the machining performances of ECMM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

ECM:

Electrochemical machining

ECMM:

Electrochemical micromachining

EDM:

Electrical discharge machining

CPE:

Composite electrolyte

MRR:

Material removal rate

IEG:

Interelectrode gap

VMS:

Video measuring system

EDL:

Electrical double layer

References

  1. Vaidya S, Ambad P, Bhosle S (2018) Industry 4.0 – a glimpse 2nd International Conference on Materials Manufacturing and Design Engineering. Procedia Manuf 20:233–238. https://doi.org/10.1016/j.promfg.2018.02.034

  2. Wilson JF (1971) Practice and theory of electrochemical machining. Wiley, New York

    Google Scholar 

  3. Gusseff W (1929) Electrochemical machining of metals. British Patent No 335 003

  4. De Barr AE, Oliver DA (1968) Electrochemical machining. Macdonald and Co Ltd, London

    Google Scholar 

  5. Trimmer AL, Hudson JL, Kock M, Schuster R (2003) Single-step electrochemical machining of complex nanostructures with ultrashort voltage pulses. Appl Phys Lett 82(19):3327–3329

    Google Scholar 

  6. Klocke F, Harst S, Zeis M, Klink A (2016) Energetic analysis of the anodic double layer during electrochemical machining of 42CrMo4 steel. Procedia CIRP 42:396–401

    Google Scholar 

  7. Ahn SH, Ryu SH, Choi DK, Chu CN (2004) Electro-chemical micro drilling using ultra short pulses. Precis Eng 28:129–134

    Google Scholar 

  8. Bannard J (1977) Effect of flow on the dissolution efficiency of mild steel during ECM. J Appl Electrochem 7:267–270

    Google Scholar 

  9. Tang L, Li B, Yang S, Kang B (2014) The effect of electrolyte current density on the electrochemical machining S-03 material. Int J Adv Manuf Technol 71:1825–1833. https://doi.org/10.1007/s00170-014-5617-x

    Article  Google Scholar 

  10. Qu NS, Fang XL, Zhang YD, Zhu D (2013) Enhancement of surface roughness in electrochemical machining of Ti6Al4V by pulsating electrolyte. Int J Adv Manuf Technol 69:2703–2709. https://doi.org/10.1007/s00170-013-5238-9

    Article  Google Scholar 

  11. Kellock B (1982) Journal of Machinery and Production Engineering 140(3604):40

    Google Scholar 

  12. Mileham AR, Harvey SJ, Stout KJ (1986) The characterization of electrochemically machined surfaces. J Wear 109(207): 207–214. https://doi.org/10.1016/0043-1648(86)90265-6

  13. McGeough J (1963) Principles of electrochemical machining. Chapman And Hall Ltd/Wiley and Sons, London/New York

    Google Scholar 

  14. Joshi SS, Marla D (2014) Electrochemical micromachining A2 - Hashmi, Saleem. In: Batalha GF, Tyne CJV, Yilbas B (eds) Comprehensive materials processing. Elsevier, Oxford, pp 373–403

    Google Scholar 

  15. Zhan D, Han L, Zhang J, Shi K, Zhou J-Z, Tian Z-W, Tian Z-Q. Confined chemical etching for electrochemical machining with nanoscale accuracy. Acc Chem Res special issue “Nano electrochemistry”. https://doi.org/10.1021/acs.accounts.6b00336

  16. Rajurkar KP, Zhu D, Wei B (1998) Minimization of machining allowance in electrochemical machining. CIRP Ann Manuf Technol 47:165–168

    Google Scholar 

  17. Tenigyohi N (1983) Current status in and future trends of ultra-precision machining and ultra-fine material processing. Ann CIRP 2(2):573–582

    Google Scholar 

  18. Datta M, Lubomyr TR (1989) Application of chemical and electro-chemical micro-machining in the electronic industry. J Electrochem Soc 136(6):285–291

    Google Scholar 

  19. Bhattacharyya B, Mitra S, Boro AK (2002) Electrochemical machining: new possibilities for micromachining. Robot Comput Integr Manuf 18:283–289

    Google Scholar 

  20. McGeough JA (1974) Principle of electrochemical machining. Chapman & Hall, London

    Google Scholar 

  21. Sundaram MM, Rajurkar K (2010) Electrical and electrochemical processes, intelligent energy field manufacturing. CRC Press, pp 173–212

  22. Pletcher D (2009) A first course in electrode processes, 2nd edn. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  23. Wolters H-H (2010) Electrochemical machining: SIG material analysis. ECM Technologies, Leeuwarden

    Google Scholar 

  24. Trethewey KR, Chamberlain J (1995) Corrosion for science and engineering, 2nd edn. Longman Group Limited, New York

    Google Scholar 

  25. Bhattacharyya B, Malapati M, Munda J (2005) Experimental study on electrochemical micromachining. J Mater Process Technol 169(3):485–492

    Google Scholar 

  26. Munda J, Malapati M, Bhattacharyya B (2007) Control of microspark and stray-current effect during EMM process. J Mater Process Technol 194(1–3):151–158

    Google Scholar 

  27. Sen M, Shan HS (2005) A review of electrochemical macro- to micro-hole drilling processes. Int J Mach Tool Manu 45(2):137–152

    Google Scholar 

  28. Rajurkar KP, Zhu D, McGeough JA, Kozak J, De Silva A (1999) New developments in electrochemical machining. CIRP Ann 48(2):567–579

    Google Scholar 

  29. Datta M, Shenoy RV, Rominkiw LT (1996) Recent Advances in the study of electrochemical micromachining. ASME. J Eng Ind 118(1):9–36. https://doi.org/10.1115/1.2803644

  30. Van Osenbrugger C, de Regt C (1985) Electrochemical micro machining. Philips Tech Rev 42:22–32

    Google Scholar 

  31. Datta M, Romankiw LT (1989) Applications of chemical and electrochemical micro machining in the electronic industry. J Electrochem Soc 136:285c

    Google Scholar 

  32. Bhattacharyya B, Munda J (2003) Experimental investigation into electrochemical micro machining (EMM) process. Int J Mater Process Technol 140:287–291

    Google Scholar 

  33. Liu Y, Zhu D, Zeng Y, Yu H (2011) Development of microelectrodes for electrochemical micromachining. Int J Adv Manuf Technol 55:195–203. https://doi.org/10.1007/s00170-010-3035-2

    Article  Google Scholar 

  34. Moon Y, Lee E, Park J (2002) A study on electrochemical micromachining for fabrication of microgrooves in an air-lubricated hydrodynamic bearing. Int J Adv Manuf Technol 20:720–726. https://doi.org/10.1007/s001700200229

    Article  Google Scholar 

  35. He B, Chen W, Jane Wang Q (2008) Surface texture effect on friction of a micro textured poly (dimethyl siloxane) (PDMS). Tribol Lett 31:187–197. https://doi.org/10.1007/s11249-008-9351-0

    Article  Google Scholar 

  36. Zhou X, Qu N, Hou Z, Zhao G (2017) Electrochemical micromachining of microgroove arrays on phosphor bronze surface for improving the tribological performance. Chin J Aeronaut 31:1609–1618. https://doi.org/10.1016/j.cja.2017.12.007

    Article  Google Scholar 

  37. Schuster R, Kirchner V, Allongue P, Ertl G (2000) Electrochemical micromachining. Science 289(5476):98–101. https://doi.org/10.1126/science.289.5476.98

    Article  Google Scholar 

  38. Kim BH, Ryu SH, Choi DK (2005) Micro electrochemical milling. J Micromech Microeng 15(1):124–129

    Google Scholar 

  39. Kim BH, Na CW, Lee YS, Choi DK, Chu CN (2005) Micro electrochemical machining of 3D micro structure using dilute sulfuric acid. CIRP Ann Manuf Technol 54(1):191–194

    Google Scholar 

  40. Bhattacharyya B, Munda J, Malapati M (2004) Advancement in electrochemical micro-machining. Int J Mach Tool Manu 44(15):1577–1589

    Google Scholar 

  41. Yong L, Zhu D, Yongbin Z, Shaofu H, Yu H (2010) Experimental investigation on complex structures machining by electrochemical micromachining technology. Chin J Aeronaut 23(578–584):578–584. https://doi.org/10.1016/S1000-9361(09)60257-0

    Article  Google Scholar 

  42. Chen C, Li J, Zhan S, Yu Z, Xu W (2016) Study of micro groove machining by micro ECM. 18th CIRP Conference on Electro Physical and Chemical Machining. Procedia CIRP 42:418–422. https://doi.org/10.1016/j.procir.2016.02.224

    Article  Google Scholar 

  43. Hyoung Ryu S (2009) Micro fabrication by electrochemical process in citric acid electrolyte. J Mater Process Technol 209:2831–2837

    Google Scholar 

  44. Mouliprasanth B, Hariharan P (2019) Measurement of performance and geometrical features in electrochemical micromachining of SS304 alloy. Exp Tech 44:259–273. https://doi.org/10.1007/s40799-019-00350-y

    Article  Google Scholar 

  45. Yong L, Ruiqin H (2013) Micro electrochemical machining for tapered holes of fuel jet nozzles. Micro Electrochemical machining for tapered holes of fuel jet nozzles. Procedia CIRP 6:395–400. https://doi.org/10.1016/j.procir.2013.03.085

  46. Lim YM, Kim SH (2001) An electrochemical fabrication method for extremely thin cylindrical micro pin. Int J Mach Tool Manu 41(15):2287–2296

    Google Scholar 

  47. Jain VK (ed) (2013) Micro manufacturing processes. CRC Press, Boca Raton

  48. Chae J, Park SS, Freiheit T (2006) Investigation of micro-cutting operations. Int J Mach Tools Manuf 46(313–332):313–332

    Google Scholar 

  49. Liu Q, Zhang Q, Wang K. Zhu FUX, Zhang J (2016) Scale effects and a method for similarity evaluation in micro electrical discharge machining. Chin. J Mech Eng 29:1193–1199. https://doi.org/10.3901/CJME.2016.0622.077

  50. Dornfeld D, Min S, Takeuchi Y (2006) Recent advances in mechanical micromachining. Ann CIRP 55(2):745–768

    Google Scholar 

  51. Liu X, Devor RE, Kapoor SG, Ehmann KF (2004) The mechanics of machining at the microscale: assessment of the current state of the science. ASME J Manuf Sci Eng 126(4):666–678. https://doi.org/10.1115/1.1813469

  52. Vollertsen F, Biermann D, Hansen HN, Jawahir IS, Kuzman K (2009) Size effects in manufacturing of metallic components. Ann CIRP 58(2):566–587

    Google Scholar 

  53. Geißdörfer S, Engel U, Geiger M (2006) FE-simulation of micro forming processes applying a mesoscopic model. Int J Mach Tool Manu 46(11):1222–1226

    Google Scholar 

  54. Keller C, Hug E (2008) Hall–Petch behaviour of Ni poly crystals with a few grains per thickness. Mater Lett 62(10):1718–1720

    Google Scholar 

  55. Gil Sevillano J, Ocana Arizcorreta I, Kubin LP (2001) Intrinsic size effects in plasticity by dislocation glide. Mater Sci Eng A 309:393–405

    Google Scholar 

  56. Kals TA, Eckstein R (2000) Miniaturization in sheet metal working. J Mater Process Technol 103(1):95–101

    Google Scholar 

  57. Peng L, Liu F, Ni J, Lai X (2007) Size effects in thin sheet metal forming and its elastic–plastic constitutive model. Mater Des 28(5):1731–1736

    Google Scholar 

  58. Simoneau AE, Elbestawi MA (2006) Surface defects during micro cutting. Int J Mach Tool Manu 46(12):1378–1387

    Google Scholar 

  59. Kim JD, Kim DS (1995) Theoretical analysis of micro-cutting characteristics in ultra-precision machining. J Mater Process Technol 49(3):387–398

    Google Scholar 

  60. Wang K, Zhang Q, Zhang J (2019) Evaluation of scale effect of micro electrical discharge machining system. J Manuf Process 38(174–178):174–178

    Google Scholar 

  61. Liu Q, Zhang Q, Zhang M, Zhang J (2016) Review of size effects in micro electrical discharge machining. Precis Eng 44(29–40):29–40

    Google Scholar 

  62. Kozak J (2004) Thermal models of pulse electrochemical machining. Bull Pol Acad Sci Tech Sci 52:4

    Google Scholar 

  63. Bhattacharyya B, Munda J (2003) Experimental investigation on the influence of electrochemical machining parameters on machining rate and accuracy in micromachining domain. Int J Mach Tool Manu 43:1301–1310

    Google Scholar 

  64. Malapati M, Sarkar A, Bhattacharyya B (2011) Frequency pulse period and duty factor effects on electro- chemical micromachining (EMM). Adv Mater Res 264–265:1334–1339

    Google Scholar 

  65. Xu L, Pan Y, Zhao C (2016) Distance effects in electrochemical micromachining. Nat Sci Rep 6:31778. https://doi.org/10.1038/srep31778

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Mouliprasanth.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mouliprasanth, B., Hariharan, P. Scaling approach towards electrochemical micromachining: a method to evaluate similarity. Int J Adv Manuf Technol 108, 3231–3249 (2020). https://doi.org/10.1007/s00170-020-05604-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05604-3

Keywords

Navigation