Numerical simulations for laser clad beads with a variable side-to-side overlap condition

Abstract

Metal additive manufacturing (AM) processes have unique challenges that need to be addressed before metal-based AM can become a reality, and in particular, an understanding of the thermal cycling and heat transfer characteristics. In this research, variable bead overlap conditions are simulated and compared to a set of experimental data configurations. Variable bead overlap conditions occur at boundary-fill interfaces and may be a tool path solution for regions that have voids. A comprehensive understanding of the consequences related to this scenario needs to be determined as the heat transfer influences the resultant build geometry, and the mechanical and physical characteristics. A three-dimensional (3D) transient uncoupled thermo-elastic–plastic model is generated using ANSYS to simulate the thermal process, hardness, and distortion for selected single- and multi-track laser cladding models. The melt pool geometry, distortion, and hardness results are presented, including a detailed time temperature and hardness analysis. Simulation models provide insight into regions that cannot be readily measured, but the processing time is long. It is recommended to explore scaling and trend analysis approaches or combine simulation and machine learning strategies to reduce the processing time.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

References

  1. 1.

    Nazemi N, Urbanic J (2017) An experimental and simulation study for powder injection multitrack laser cladding of P420 stainless steel on AISI 1018 steel for selected mechanical properties. ASME J Manuf Sci Eng 140(1):011009. https://doi.org/10.1115/1.4037604

    Article  Google Scholar 

  2. 2.

    Alam A, Mehdi M, Urbanic RJ, Edrisy A (2020) Electron backscatter diffraction (EBSD) analysis of laser-cladded AISI 420 martensitic stainless steel. Mater Charact 151:110138. https://doi.org/10.1016/j.matchar.2020.110138

    Article  Google Scholar 

  3. 3.

    Alam A, Edrisy A, Urbanic RJ (2019) Microstructural analysis of the laser-cladded AISI 420 martensitic stainless steel. Metall Matter Trans A 50:2495–2506. https://doi.org/10.1007/s11661-019-05156-6

    Article  Google Scholar 

  4. 4.

    Liu H, Hao J, Han Z, Yu G, He X, Yang H (2016) Microstructural evolution and bonding characteristic in multi-layer laser cladding of NiCoCr alloy on compacted graphite cast. J Mater Process Technol 232:153–164

    Article  Google Scholar 

  5. 5.

    de Lima MSF, Sankaré S (2014) Microstructure and mechanical behavior of laser additive manufactured AISI 316 stainless steel stringers. Mater Des 55:526–532. https://doi.org/10.1016/j.matdes.2013.10.016

    Article  Google Scholar 

  6. 6.

    Unnikrishnan R, SatishIdury KSN, Ismail TP, Bhadauria A, Shekhawat SK, Khatirkar RK, Sapate S (2014) Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments. Mater Charact 93:10–23. https://doi.org/10.1016/j.matchar.2014.03.013

    Article  Google Scholar 

  7. 7.

    Zhang Y, Xi M, Gao S, Shi L (2003) Characterization of laser direct deposited metallic parts. J Mater Process Technol 142:582–585

    Article  Google Scholar 

  8. 8.

    Mazumder J, Choi J, Nagarathnam K, Koch J, Hetzner D (1997) The direct metal deposition of H13 tool steel for 3-D components. JOM 49:55–60. https://doi.org/10.1007/BF02914687

    Article  Google Scholar 

  9. 9.

    Hofmeister W, Griffith M (2001) Solidification in direct metal deposition by LENS processing. JOM 53:30–34. https://doi.org/10.1007/s11837-001-0066-z

    Article  Google Scholar 

  10. 10.

    Kobryn P, Semiatin S (2003) Microstructure and texture evolution during solidification processing of Ti–6Al–4V. J Mater Process Technol 135(2-3):330–339. https://doi.org/10.1016/S0924-0136(02)00865-8

    Article  Google Scholar 

  11. 11.

    Bonifaz EA, Richards NL (2009) Modeling cast IN-738 super-alloy gas tungsten arc welds. Acta Mater 57(6):1785–1794. https://doi.org/10.1016/j.actamat.2008.12.022

    Article  Google Scholar 

  12. 12.

    Yue TM, Xie H, Lin X, Yang HO, Meng GH (2014) Solidification behaviour in laser cladding of AlCoCrCuFeNi high-entropy alloy on magnesium substrates. J Alloys Compd 587:588–593. https://doi.org/10.1016/j.jallcom.2013.10.254

    Article  Google Scholar 

  13. 13.

    Barr C, Sun S, Easton M, Orchowski N, Matthews N, Brandt M (2018) Influence of macrosegregation on solidification cracking in laser clad ultra-high strength steels. Surf Coat Technol 340:126–136. https://doi.org/10.1016/j.surfcoat.2018.02.052

    Article  Google Scholar 

  14. 14.

    Fallah V, Corbin S, Khajepour A (2010) Solidification behaviour and phase formation during pre-placed laser cladding of Ti45Nb on mild steel. Surf Coat Technol 204(2010):2400–2409. https://doi.org/10.1016/j.surfcoat.2010.01.010

    Article  Google Scholar 

  15. 15.

    Bi G, Gasser A, Wissenbach K, Drenker A, Poprawe R (2006) Investigation on the direct laser metallic powder deposition process via temperature measurement. Appl Surf Sci 253(3):1411–1416. https://doi.org/10.1016/j.apsusc.2006.02.025

    Article  Google Scholar 

  16. 16.

    Doubenskaia M, Bertrand P, Smurov IY (2004) Temperature monitoring of Nd:YAG laser cladding (CW and PP) by advanced pyrometry and CCD-camera based diagnostic tool. Laser-Assisted Micro Nanotechnol 5399:212–219. https://doi.org/10.1117/12.552850

    Article  Google Scholar 

  17. 17.

    Hu YP, Chen CW, Mukherjee K (2006) Measurement of temperature distributions during laser cladding process. J Laser Appl 12(3):126–130. https://doi.org/10.2351/1.521921

    Article  Google Scholar 

  18. 18.

    Hua T, Jing C, Xin L, Fengying Z, Weidong H (2008) Research on melt pool temperature in the process of laser rapid forming. J Mater Process Technol 98(1):454–462. https://doi.org/10.1016/j.jmatprotec.2007.06.090

    Article  Google Scholar 

  19. 19.

    Peyre P, Aubry P, Fabbro R, Neveu R, Longuet A (2008) Analytical and numerical modelling of the direct metal deposition laser process. J Phys D Appl Phys 41:025403. https://doi.org/10.1088/0022-3727/41/2/025403

    Article  Google Scholar 

  20. 20.

    Wang L, Felicelli S (2006) Analysis of thermal phenomena in LENSTM deposition. Mater Sci Eng 435–436:625–631. https://doi.org/10.1016/j.msea.2006.07.087

    Article  Google Scholar 

  21. 21.

    Zhang Y, Yu G, He X, Ning W, Zheng C (2012) Numerical and experimental investigation of multilayer SS410 thin wall built by laser direct metal deposition. J Mater Process Technol 212(1):106–112. https://doi.org/10.1016/j.jmatprotec.2011.08.011

    Article  Google Scholar 

  22. 22.

    Vasudevan M, Chandrasekhar N, Maduraimuthu V, Bhaduri A, Raj B (2011) Real-time monitoring of weld pool during GTAW using infra-red thermography and analysis of Infra-Red thermal images. Weld World 55:83–89. https://doi.org/10.1007/BF03321311

    Article  Google Scholar 

  23. 23.

    Song L, Mazumder J (2011) Feedback control of melt pool temperature during laser cladding Process. IEEE Trans Control Syst Technol 19:1349–1356. https://doi.org/10.1109/TCST.2010.2093901

    Article  Google Scholar 

  24. 24.

    Salehi D, Brandt M (2005) Melt pool temperature control using LabVIEW in Nd:YAG laser blown powder cladding process. Int J Adv Manuf Technol 29:273–278. https://doi.org/10.1007/s00170-005-2514-3

    Article  Google Scholar 

  25. 25.

    Pavlina EJ, Van Tyne CJ (2008) Correlation of yield strength and tensile strength with hardness for steels. J Mater Eng Perform 17:254–262. https://doi.org/10.1007/s11665-008-9225-5

    Article  Google Scholar 

  26. 26.

    Iravani M, Khajepour A, Corbin S, Esmaeili S (2012) Pre-placed laser cladding of metal matrix diamond composite on mild steel. Surf Coat Technol 206(8-9):2089–2097. https://doi.org/10.1016/j.surfcoat.2011.09.027

    Article  Google Scholar 

  27. 27.

    Lewis GK, Schlienger E (2000) Practical considerations and capabilities for laser assisted direct metal deposition. Mater Des 21(1):417–423. https://doi.org/10.1016/S0261-3069(99)00078-3

    Article  Google Scholar 

  28. 28.

    Mazumder J, Dutta D, Kikuchi N, Ghosh A (2000) Closed loop direct metal deposition: art to part. Opt Lasers Eng 34(4-6):397–414. https://doi.org/10.1016/S0143-8166(00)00072-5

    Article  Google Scholar 

  29. 29.

    Mazumder J, Schifferer A, Choi J (1999) Direct materials deposition: designed macro and microstructure. Matter Res Innov 3:118–131. https://doi.org/10.1007/s100190050137

    Article  Google Scholar 

  30. 30.

    Shin K, Natu H, Dutta D, Mazumder J (2003) A method for the design and fabrication of heterogeneous objects. Mater Des 24:339–353. https://doi.org/10.1016/S0261-3069(03)00060-8

    Article  Google Scholar 

  31. 31.

    Yu T, Zhao Y, Sun J, Chen Y, Qu W (2018) Process parameters optimization and mechanical properties of forming parts by direct laser fabrication of YCF101 alloy. J Mater Process Technol 262:75–84. https://doi.org/10.1016/j.jmatprotec.2018.06.023

    Article  Google Scholar 

  32. 32.

    Wang C, Gao Y, Wang R, Wei D, Cai M, Fu Y (2018) Microstructure of laser-clad Ni60 cladding layers added with different amounts of rare-earth oxides on 6063 Al alloys. J Alloys Compd 740:1099–1107. https://doi.org/10.1016/j.jallcom.2018.01.061

    Article  Google Scholar 

  33. 33.

    Liu L, Zhang C (2014) Fe-based amorphous coatings: structures and properties. Thin Solid Films 561:70–86. https://doi.org/10.1016/j.tsf.2013.08.029

    Article  Google Scholar 

  34. 34.

    Zhou S, Xu Y, Liao B, Sun Y, Dai X, Yang J, Li Z (2018) Effect of laser remelting on microstructure and properties of WC reinforced Fe-based amorphous composite coatings by laser cladding. Opt Laser Technol 103:8–16. https://doi.org/10.1016/j.optlastec.2018.01.024

    Article  Google Scholar 

  35. 35.

    Cao YB, Ren HT, Hu CS, Meng QX, Liu Q (2015) In-situ formation behavior of NbC reinforced Fe-based laser cladding coatings. Mater Lett 147:61–63. https://doi.org/10.1016/j.matlet.2015.02.026

    Article  Google Scholar 

  36. 36.

    Zhu YY, Li ZG, Li RF, Li M, Daze XL, Feng K, Wu YX (2013) Microstructure and property of Fe-Co-B-Si-C-Nb amorphous composite coating fabricated by Laser cladding process. Appl Surf Sci 280:50–54. https://doi.org/10.1016/j.apsusc.2013.04.077

    Article  Google Scholar 

  37. 37.

    Wu X, Xu B, Hong Y (2002) Synthesis of thick Ni66Cr5Mo4Zr6P15B4 amorphous alloy coating and large glass-forming ability by laser cladding, Mater. Lett. 56(5):838–841. https://doi.org/10.1016/S0167-577X(02)00624-9

    Article  Google Scholar 

  38. 38.

    Lu Y, Huang G, Wang Y, Li H, Qin Z, Lu X (2018) Crack-free Fe-based amorphous coating synthesized by Laser cladding. Mater Lett 210:46–50. https://doi.org/10.1016/j.matlet.2017.08.125

    Article  Google Scholar 

  39. 39.

    Tan C, Zhu H, Kuang T, Shid J, Liu H, Liu Z (2017) Laser cladding Al-based amorphous-nanocrystalline composite coatings on AZ80 magnesium alloy under water cooling condition. J Alloys Compd 690:108–115. https://doi.org/10.1016/j.jallcom.2016.08.082

    Article  Google Scholar 

  40. 40.

    Shu FY, Liu S, Zhao HY, He WX, Sui SH, Zhang J, He P, Xu BS (2018) Structure and high-temperature property of amorphous composite coating synthesized by laser cladding FeCrCoNiSiB high-entropy alloy powder. J Alloys Compd 731:662–666. https://doi.org/10.1016/j.jallcom.2017.08.248

    Article  Google Scholar 

  41. 41.

    Nazemi N, Urbanic RJ (2018) A numerical investigation for alternative toolpath deposition solutions for surface cladding of stainless steel P420 powder on AISI 1018 steel substrate. Int J Adv Manuf Technol 96:4123–4143. https://doi.org/10.1007/s00170-018-1840-1

    Article  Google Scholar 

  42. 42.

    Urbanic RJ, Nazemi N, Mohajernia B (2019) Developing geometric analysis tools to compare heat map results for metal additive manufactured components. Comput Aided Des Appl 17(2):288–311

    Article  Google Scholar 

  43. 43.

    Toyserkani E, Khajepour A, Corbin S (2004) 3-D finite element modeling of laser cladding by powder injection: effects of laser pulse shaping on the process. Opt Lasers Eng 41(6):849–867. https://doi.org/10.1016/S0143-8166(03)00063-0

    Article  Google Scholar 

  44. 44.

    Farahmand P, Kovacevic R (2014) An experimental–numerical investigation of heat distribution and stress field in single- and multi-track laser cladding by a high-power direct diode laser. Opt Laser Technol 63:154–168. https://doi.org/10.1016/j.optlastec.2014.04.016

    Article  Google Scholar 

  45. 45.

    Bahrami A, Valentine D, Aidun D (2015) Computational analysis of the effect of welding parameters on energy consumption in GTA welding process. Int J Mech Sci 93:111–119. https://doi.org/10.1016/j.ijmecsci.2015.01.008

    Article  Google Scholar 

  46. 46.

    Heigel JC, Michaleris P, Reutzel EW Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti–6Al–4V. Addit Manuf 5:9–19. https://doi.org/10.1016/j.addma.2014.10.003

  47. 47.

    Vundru C, Paul S, Singh R, Yan W (2018) Numerical analysis of multi-layered laser cladding for die repair applications to determine residual stresses and hardness. Procedia Manuf 26:952–961. https://doi.org/10.1016/j.promfg.2018.07.122

    Article  Google Scholar 

  48. 48.

    Shigley J, Mischke, Budynas R (2003) Mechanical engineering design. Fifth edition, McGraw Hill Higher Education, p 197

    Google Scholar 

  49. 49.

    Alam M, Nazemi N, Urbanic RJ, Saqib S, Edrisy A (2027) Predictive modeling and the effect of process parameters on the bead geometry and microhardness for a single track laser cladding of AISI 420 stainless steel, Springer. SAE World Congress, Detroit

Download references

Acknowledgments

The support provided by MITACs, CAMufacturing Solutions, Inc., and Lincoln Laser Solutions, Inc. are gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. J. Urbanic.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zareh, P., Urbanic, R.J. Numerical simulations for laser clad beads with a variable side-to-side overlap condition. Int J Adv Manuf Technol 109, 1027–1058 (2020). https://doi.org/10.1007/s00170-020-05565-7

Download citation

Keywords

  • Laser cladding
  • Metal
  • 420 stainless steel
  • Numerical simulation
  • Variable overlap
  • Hardness
  • Distortion