Skip to main content
Log in

Positioning measurement using a new artificial vision algorithm in LabVIEW based on the analysis of images on an LCD screen

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Research in vision systems applied to manufacturing processes has increased during the last years. Nevertheless, accurate positioning systems frequently require costly investments. This article presents a new algorithm developed in LabVIEW for controlling a novel positioning system that processes images to obtain the position, which could be implemented in micromachining. With this aim, the method uses the analysis of the LEDs shown in an image projected on an LCD screen to perform an accurate positioning. The ultimate goal of this method is to get the coordinates of the images shown on the screen in order to know the movement made by the system and, in this way, be able to compensate the error. The experimental results and related analysis developed proved the accuracy and consistency in dissimilar situations. In addition, once implemented the algorithm proposed in a closed loop program, a positioning system is achieved where the error is always convergent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Montes CA, Ziegert JC, Wong C, Mears L, Tucker T (2010) 2-D absolute positioning system for real time control applications. In: Proceedings A (ed) Proceedings of the Twenty-fourth Annual Meeting of the American Society for Precision Engineering, Atlanta, GA, USA

  2. De Francisco-Ortiz O, Sánchez-Reinoso HT, Estrems-Amestoy M (2015) Development of a robust and accurate positioning system in micromachining based on CAMERA and LCD screen. In: Procedia Engineering. Vol 132, pp 895-902

  3. Cano-García AE, Lázaro JL, Infante A, Fernández P, Pompa-Chacón Y, Espinoza F (2012) Using the standard deviation of a region of interest in an image to estimate camera to emitter distance. Sensors 12(5):5687

    Article  Google Scholar 

  4. Wong CY, Montes C, Mears L, Ziegert J, Ieee (2010) Model-based control to enhance a novel two dimensional positioning system

  5. Franzi E, Masa P, Heim P (2008) Method of two-dimensional measurement of the position of an object. In: Office EP (ed). Vol EP 1 972 901 A1, EU

  6. Zhang Z, Han D, Dezert J, Yang Y (2019) A New image registration algorithm based on evidential reasoning. Sensors 19(5):1091

    Article  Google Scholar 

  7. Yusifli E, Yahiaoui R, Qaisar SM et al (2017) FPGA-based HD Camera system for the micropositioning of biomedical micro-objects using a contactless micro-conveyor. Micromachines 8(3):19. https://doi.org/10.3390/mi8030074

    Article  Google Scholar 

  8. Quan CG, Tay CJ, Sun W, He XY (2008) Determination of three-dimensional displacement using two-dimensional digital image correlation. Appl Opt 47(4):583–593. https://doi.org/10.1364/ao.47.000583

    Article  Google Scholar 

  9. Xiao S, Tao W, Zhao H (2016) A flexible fringe projection vision system with extended mathematical model for accurate three-dimensional measurement. Sensors 16(5):612

    Article  Google Scholar 

  10. Chen JX, Lin SW, Zhou XL, Tu YL (2017) An on-machine error calibration method for a laser micromachining tool. Precis Eng 47:239–248. https://doi.org/10.1016/j.precisioneng.2016.08.009

    Article  Google Scholar 

  11. Posada-Gómez R, Sandoval-González OO, Sibaja AM, Portillo-Rodríguez O, Alor-Hernández G (2011) Digital image processing using LabVIEW. In: Practical Applications and Solutions Using LabVIEW™ Software. IntechOpen

  12. Sanguino TDM, Webber PAC (2018) Making image and vision effortless: learning methodology through the quick and easy design of short case studies. Comput Appl Eng Educ 26(6):2102–2115. https://doi.org/10.1002/cae.22003

    Article  Google Scholar 

  13. Lamer J, Cymbalak D, Jakab F (2013) Computer vision based object recognition principles in education. 2013 11th Ieee International Conference on Emerging Elearning Technologies and Applications (Iceta 2013): 253-257

  14. Horng J-H (2008) Hybrid MATLAB and LabVIEW with neural network to implement a SCADA system of AC servo motor. Adv Eng Softw 39(3):149–155

    Article  Google Scholar 

  15. Dsouza RD, Navin KP, Theodoridis T, Sharma P (2018) Design, fabrication and testing of a 2 DOF compliant flexural microgripper. Microsyst Technol Micro Nanosyst -Inf Storage Process Syst 24(9):3867–3883. https://doi.org/10.1007/s00542-018-3861-y

    Article  Google Scholar 

  16. Mahmoodi M, James LA, Johansen T (2018) Automated advanced image processing for micromodel flow experiments; an application using labVIEW. J Pet Sci Eng 167:829–843. https://doi.org/10.1016/j.petrol.2018.02.031

    Article  Google Scholar 

  17. Ijiri T, Mitsushio T, Suzuki Y, Yoshiura T Apparatus for assisting development of program executed in image processing inspection apparatus, displays the screens for setting shape and position about range made into image processing object with respect to processing modules. In. Omron Kk (Omro-C)

  18. Rout A, Deepak B, Biswal BB, Mahanta GB, Gunji BM (2018) An optimal image processing method for simultaneous detection of weld seam position and weld gap in robotic arc welding. Int J Manuf Mater Mech Eng 8(1):37–53. https://doi.org/10.4018/ijmmme.2018010103

    Article  Google Scholar 

  19. Bardak T, Bardak S (2017) Prediction of wood density by using red-green-blue (RGB) color and fuzzy logic techniques. Politeknik Dergisi 20(4):979–984. https://doi.org/10.2339/politeknik.369132

    Article  Google Scholar 

  20. Bardak T, Bardak S, Sözen E (2017) Determination of strain distributions of solid wood and plywood in bending test by digital image correlation. J For Fac 17(1):354–361

    Google Scholar 

  21. Yamamoto K, Ishimaru H, Hayashi E (2012) Development of an autonomous-drive personal robot "An environment recognition and the position detecting system that used image processing and an LRS"

  22. Tayama T, Kurose Y, Nitta T, et al. (2017) Image processing for autonomous positioning of eye surgery robot in micro-cannulation. 3rd Cirp Conference on Biomanufacturing 65: 105-109. https://doi.org/10.1016/j.procir.2017.04.036

  23. Zhou G, Shen B, Yan J (2018) Research on the algorithm for solving the indoor vision positioning model of mobile robot. In: 2018 International Conference on Mathematics, Modelling, Simulation and Algorithms (MMSA 2018). Atlantis Press

  24. Zhou K, Wang XJ, Wang Z, Wei H, Yin L (2018) Complete initial solutions for iterative pose estimation from planar objects. Ieee Access 6:22257–22266. https://doi.org/10.1109/access.2018.2827565

    Article  Google Scholar 

  25. Lyu D, Xia H, Wang C (2018) Research on the effect of image size on real-time performance of robot vision positioning. EURASIP J Image Video Process 2018(1):112

    Article  Google Scholar 

  26. Montijano E, Cristofalo E, Zhou D, Schwager M, Sagüés C (2016) Vision-based distributed formation control without an external positioning system. IEEE Trans Robot 32(2):339–351

    Article  Google Scholar 

  27. Yang S, Jiang R, Wang H, Ge SS (2017) Road constrained monocular visual localization using Gaussian-Gaussian cloud model. IEEE Trans Intell Transp Syst 18(12):3449–3456

    Article  Google Scholar 

  28. Guo D, Wang H, Leang KK (2018) Nonlinear vision-based observer for visual servo control of an aerial robot in global positioning system denied environments. J Mech Robot 10(6):061018

    Article  Google Scholar 

  29. Vivacqua RPD, Bertozzi M, Cerri P, Martins FN, Vassallo RF (2018) Self-localization based on visual lane marking maps: an accurate low-cost approach for autonomous driving. IEEE Trans Intell Transp Syst 19(2):582–597

    Article  Google Scholar 

  30. Fang J, Wang Z, Zhang H, Zong W (2018) Self-localization of intelligent vehicles based on environmental contours. In: 2018 3rd International Conference on Advanced Robotics and Mechatronics (ICARM), pp 624-629

  31. Islam KT, Wijewickrema S, Pervez M, O'Leary S (2018) Road trail classification using color images for autonomous vehicle navigation. In: 2018 Digital Image Computing: Techniques and Applications (DICTA), pp 1-5

  32. Samarasekera S, Oskiper T, Kumar R, Sizintsev M, Branzoi V (2016) Augmented reality vision system for tracking and geolocating objects of interest. In. Google Patents

  33. Suenaga H, Tran HH, Liao H et al (2015) Vision-based markerless registration using stereo vision and an augmented reality surgical navigation system: a pilot study. BMC Med Imaging 15(1):51

    Article  Google Scholar 

  34. Rajeev S, Wan Q, Yau K, Panetta K, Agaian SS (2019) Augmented reality-based vision-aid indoor navigation system in GPS denied environment. In: Proc SPIE 10993, Mobile Multimedia/Image Processing, Security, and Applications

  35. Sim R, Little JJ (2009) Autonomous vision-based robotic exploration and mapping using hybrid maps and particle filters. Image Vis Comput 27(1-2):167–177

    Article  Google Scholar 

  36. Valencia-Garcia R, Martinez-Béjar R, Gasparetto A (2005) An intelligent framework for simulating robot-assisted surgical operations. Expert Syst Appl 28(3):425–433

    Article  Google Scholar 

  37. Pichler A, Akkaladevi SC, Ikeda M et al (2017) Towards shared autonomy for robotic tasks in manufacturing. Proc Manuf 11:72–82

    Google Scholar 

  38. Patterson T, McClean S, Morrow P, Parr G, Luo C (2014) Timely autonomous identification of UAV safe landing zones. Image Vis Comput 32(9):568–578

    Article  Google Scholar 

  39. González D, Pérez J, Milanés V (2017) Parametric-based path generation for automated vehicles at roundabouts. Expert Syst Appl 71:332–341

    Article  Google Scholar 

  40. Sanchez-Lopez JL, Pestana J, De La Puente P, Campoy P (2015) A reliable open-source system architecture for the fast designing and prototyping of autonomous multi-UAV systems: Simulation and experimentation. J Intell Robot Syst: 1-19

  41. Olivares-Mendez MA, Kannan S, Voos H (2015) Vision based fuzzy control autonomous landing with UAVs: from V-REP to real experiments. In, pp 14-21

  42. Romero-Ramirez FJ, Muñoz-Salinas R, Medina-Carnicer R (2018) Speeded up detection of squared fiducial markers. Image Vis Comput 76:38–47

    Article  Google Scholar 

  43. Germanese D, Leone GR, Moroni D, Pascali MA, Tampucci M (2018) Long-term monitoring of crack patterns in historic structures using UAVs and planar markers: a preliminary study. J Imag 4(8)

  44. An GH, Lee S, Seo M-W, Yun K, Cheong W-S, Kang S-J (2018) Charuco board-based omnidirectional camera calibration method. Electronics 7(12)

  45. Pflugi S, Vasireddy R, Lerch T, et al. (2017) Augmented marker tracking for peri-acetabular osteotomy surgery. In, pp 937-941

  46. Lima JP, Roberto R, Simões F et al (2017) Markerless tracking system for augmented reality in the automotive industry. Expert Syst Appl 82:100–114

    Article  Google Scholar 

  47. Chen P, Peng Z, Li D, Yang L (2016) An improved augmented reality system based on AndAR. J Vis Commun Image Represent 37:63–69

    Article  Google Scholar 

  48. Khattak S, Cowan B, Chepurna I, Hogue A (2014) A real-time reconstructed 3D environment augmented with virtual objects rendered with correct occlusion. Proc GEM, Toronto, ON, Canada: 1-8

  49. Kalkman CJ (1995) LABVIEW - a software system for data-acquisition, data-analysis, and instrument control. J Clin Monit 11(1):51–58. https://doi.org/10.1007/bf01627421

    Article  Google Scholar 

  50. Leviton DB (2004) Method and apparatus for two-dimensional absolute optical encoding. In. U.S. Patent 6,765,195 B1

  51. Chu D, Trujillo H, Whitney E, Young J (2006) Rapid high resolution absolute 2-D encoding by low resolution digital imaging of a mathematically generated 3-Tone target. In: ASPE, Santa Clara, CA, USA

  52. Cheng HD, Jiang XH, Sun Y, Wang JL (2001) Color image segmentation: advances and prospects. Pattern Recogn 34(12):2259–2281. https://doi.org/10.1016/s0031-3203(00)00149-7

    Article  MATH  Google Scholar 

  53. de Francisco Ortiz Ó (2020) Análisis e implementación de un método de visión artificial para microposicionado basado en un sistema cámara-pantalla. In: Department of Materials and Manufacturing Engineering. Technical University of Cartagena, PQDT - Global, p 274

  54. Shik JW, Lee S-M, Kim K-S (2002) Development of real-time image processing algorithm on the positions of multi-object in an image plane. J Korean Soc Nondestruct Test 22(5):523–532

    Google Scholar 

  55. Grois D, Hadar O (2013) Advances in region-of-interest video and image processing. In: Multimedia Networking and Coding. Igi Global, Hersey, pp 76-123

  56. Shah B, Panchal G, Ieee (2017) Comparative analysis on different region of interest (RoI) extraction mechanisms for fingerprint. Proceedings of the International Conference on Intelligent Sustainable Systems (Iciss 2017): 690-694

  57. Zhou HB, Zhang YD, Yu ZH (2015) Image classification based on region of interest detection. In: 9th International Symposium on Multispectral Image Processing and Pattern Recognition (MIPPR) - Pattern Recognition and Computer Vision. Vol 9813. Spie-Int Soc Optical Engineering, Enshi, PEOPLES R CHINA

  58. Salah MM, Napoleon SA, El-Rabaie EM, Abd El-Samie FE, Abd Elnaby MM (2019) Sensitivity analysis of a class of iris localization algorithms to blurring effect. Wirel Pers Commun 104(1):269–286. https://doi.org/10.1007/s11277-018-6019-4

    Article  Google Scholar 

  59. Tashlinskii AG, Smirnov PV (2015) Compensation algorithm for the blurring effect of a moving object using a sequence of frames. Pattern Recognit Image Anal 25(4):722–722. https://doi.org/10.1134/s1054661815040240

    Article  Google Scholar 

  60. Cordella LP, Duff MJB, Levialdi S (1978) Analysis of computational cost in image-processing - case-study. IEEE Trans Comput 27(10):904–910

    Article  Google Scholar 

  61. Cattaneo CA, Larcher LI, Ruggeri AI, Herrera A, Biasoni E (2011) Métodos de umbralización de imágenes digitales basados en entropia de shannon y otros. Mach Learn 20(3):2785–2805

    Google Scholar 

  62. Li CH, Lee CK (1993) Minimum cross entropy thresholding. Pattern Recogn 26(4):617–625. https://doi.org/10.1016/0031-3203(93)90115-d

    Article  Google Scholar 

  63. Pun T (1981) Entropic thresholding, a new approach. Comput Graphics Image Process 16(3):210–239. https://doi.org/10.1016/0146-664x(81)90038-1

    Article  Google Scholar 

  64. Kapur JN, Sahoo PK, Wong AKC (1985) A new method for gray-level picture thresholding using the entropy of the histogram. Comput Vis Graph Image Process 29(3):273–285. https://doi.org/10.1016/0734-189x(85)90125-2

    Article  Google Scholar 

  65. Kittler J, Illingworth J (1986) Minimum error thresholding. Pattern Recogn 19(1):41–47. https://doi.org/10.1016/0031-3203(86)90030-0

    Article  Google Scholar 

  66. Instruments N (2016) NI vision 2016 for LabVIEW Manual. In

  67. Hollifield B, Habibi E, Nimmo I, Oliver D (2008) The high performance HMI handbook: a comprehensive guide to designing, implementing and maintaining effective HMIs for industrial plant operations. Plant Automation Services

  68. Albornoz MC (2014) Diseño de interfaz gráfica de usuario. In: XVI Workshop de Investigadores en Ciencias de la Computación, pp 540-544

  69. Pressman RS (2005) Software engineering: a practitioner's approach. Edition 8 (16-03-2014) edn. Palgrave Macmillan

  70. de Francisco Ortiz Ó, Sánchez Reinoso HT, Estrems Amestoy M (2016) Accuracy and repeatability estimation in micromachining using an enhanced artificial vision algorithm for controlling the screen LED positioning on a LCD screen. In: Euspen´s 16th International Conference & Exhibition Proceedings, Nottingham, UK, pp 236-264

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Óscar de Francisco Ortiz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Francisco Ortiz, Ó., Estrems Amestoy, M. & Carrero-Blanco, J. Positioning measurement using a new artificial vision algorithm in LabVIEW based on the analysis of images on an LCD screen. Int J Adv Manuf Technol 109, 155–170 (2020). https://doi.org/10.1007/s00170-020-05497-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05497-2

Keywords

Navigation