Skip to main content
Log in

Research on the electromagnetic blanking based on force-free region deformation: simulation and experiments

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Electromagnetic blanking (EMB) based on force-free region deformation is proposed to meet the no burr forming requirement of diaphragm parts for carrier rockets in the aerospace field. Deformation behaviors of the part were revealed along with the effects of key process parameters on the forming quality investigated. During the EMB process, the electromagnetic force, effective stress, and plastic strain were distributed in a rather uniform annular region and peaked near the edge of the die. High-speed deformation coupled tension and bending were evidenced. With the increase in discharge voltage, the diameter of the part reduced slightly, and the filling degree of the trimmed edge section reduced remarkably, while the thickness uniformity was improved. It was found that the filling degree was dependent on the deformation degree and the interaction between two different regions. Similar effects of initial blank diameter and discharge voltage were observed. The interaction was notable at a larger initial blank diameter, causing the sharper drop in the filling degree. The forming quality could be improved by using a blank holder, but an undesirable extra deformation zone would appear. In a word, the proposed EMB process is capable of forming no burr diaphragm part with high quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Li JJ, Li L, Wan M, Yu HP, Liu L (2018) Innovation applications of electromagnetic forming and its fundamental problems. Procedia Manuf 15:14–30. https://doi.org/10.1016/j.promfg.2018.07.165

    Article  Google Scholar 

  2. Psyk V, Risch D, Kinsey BL, Tekkaya AE, Kleiner M (2011) Electromagnetic forming—a review. J Mater Process Technol 211(5):787–829. https://doi.org/10.1016/j.jmatprotec.2010.12.012

    Article  Google Scholar 

  3. Su HL, Huang L, Li JJ, Ma F, Ma HJ, Huang P, Feng F (2020) Inhomogeneous deformation behaviors of oblique hole-flanging parts during electromagnetic forming. J Manuf Process 52:1–11. https://doi.org/10.1016/j.jmapro.2019.12.047

    Article  Google Scholar 

  4. Wang ZQ, Huang L, Li JJ, Wang SB, Liu XL (2015) Structure optimization design of coil on electromagnetic incremental forming of large aluminum alloy curved surface parts. J Plast Eng 22:71–77. (In Chinese). https://doi.org/10.3969/j.issn.1007-2012.2015.06.013

    Article  Google Scholar 

  5. Liu XL, Huang L, Li JJ, Su HL (2019) An electromagnetic incremental forming (EMIF) strategy for large-scale parts of aluminum alloy based on dual coil. Int J Adv Manuf Technol 104(1-4):411–431. https://doi.org/10.1007/s00170-019-03892-y

    Article  Google Scholar 

  6. Choi MK, Huh H, Park N (2017) Process design of combined deep drawing and electromagnetic sharp edge forming of DP980 steel sheet. J Mater Process Technol 244:331–343. https://doi.org/10.1016/j.jmatprotec.2017.01.035

    Article  Google Scholar 

  7. Zhu H, Huang L, Wang ZY, Li JJ, Ma HJ, Su HL (2019) Fracture behaviour of laser-welded 2219-T6 aluminum alloy under pulsed Lorentz force. J Mater Sci 54(13):9857–9874. https://doi.org/10.1007/s10853-019-03588-4

    Article  Google Scholar 

  8. Zhu H, Huang L, Li JJ, Li XX, Ma HJ, Wang CM, Ma F (2018) Strengthening mechanism in laser-welded 2219 aluminum alloy under the cooperative effects of aging treatment and pulsed electromagnetic loadings. Mat Sci Eng A-Struct Mater Prop Microstruct Process 714:124–139. https://doi.org/10.1016/j.msea.2017.12.081

    Article  Google Scholar 

  9. Paese E, Geier M, Homrich RP, Rosa P, Rossi R (2019) Sheet metal electromagnetic forming using a flat spiral coil: experiments, modeling, and validation. J Mater Process Technol 263:408–422. https://doi.org/10.1016/j.jmatprotec.2018.08.033

    Article  Google Scholar 

  10. Deng HK, Mao YF, Li GY, Cui JJ (2019) A study of electromagnetic free forming in AA5052 using digital image correlation method and FE analysis. J Manuf Process 37:595–605. https://doi.org/10.1016/j.jmapro.2018.12.033

    Article  Google Scholar 

  11. Yu HP, Chen J, Liu W, Yin HZ, Li CF (2018) Electromagnetic forming of aluminum circular tubes into square tubes: experiment and numerical simulation. J Manuf Process 31:613–623. https://doi.org/10.1016/j.jmapro.2017.12.019

    Article  Google Scholar 

  12. Zhang X, Wang ZR, Song FM, Yu LZ, Lu X (2004) Finite element simulation of the electromagnetic piercing of sheet metal. J Mater Process Technol 151(1-3):350–354. https://doi.org/10.1016/j.jmatprotec.2004.04.086

    Article  Google Scholar 

  13. Uhlmann E, Scholz M (2003) Zerteilen von Aluminumblechen durch Impulsmagnetfelder. In: Proceedings of the 2. Kolloquium Elektromagnetische Umformung, Dortmund pp 87-94.

  14. Golovashchenko S (1996) Impulsive electromagnetic tubes shearing process. In: Proc. 5th ICTP pp 939-942.

  15. Kautz T (2008) Impulsmagnetisches Beschneiden von dünnwandigen Hohlprofilen. Shaker.

    Google Scholar 

  16. Maier-Komor P, Hoffmann H, Ostermair M (2010) Cutting of hollow profiles using electromagnetic fields. Int J Mater Form 3(1):503–506. https://doi.org/10.1007/s12289-010-0817-x

    Article  Google Scholar 

  17. Deng JH, Wang W, Jiang XY, Zhan YR (2014) Experimental investigation on electromagnetic assisted micro-piecing of brass foil. J Plast Eng 21:58–62. (In Chinese). https://doi.org/10.3969/j.issn.1007-2012.2014.03.012

    Article  Google Scholar 

  18. Liu W, Zou XF, Huang SY, Lei Y (2018) Electromagnetic-assisted calibration for surface part of aluminum alloy with a dedicated uniform pressure coil. Int J Adv Manuf Technol 100(1-4):721–727. https://doi.org/10.1007/s00170-018-2743-x

    Article  Google Scholar 

  19. Guo K, Lei XP, Zhan M, Tan JQ (2017) Electromagnetic incremental forming of integral panel under different discharge conditions. J Manuf Process 28:373–382. https://doi.org/10.1016/j.jmapro.2017.01.010

    Article  Google Scholar 

  20. Huang YJ, Lai ZP, Cao QL, Han XT, Liu N, Li XX, Chen M, Li L (2019) Controllable pulsed electromagnetic blank holder method for electromagnetic sheet metal forming. Int J Adv Manuf Technol 103(9-12):4507–4517. https://doi.org/10.1007/s00170-019-03922-9

    Article  Google Scholar 

  21. Cui XH, Yu HL, Wang QS (2018) Reduction of corner radius of cylindrical parts by magnetic force under various loading methods. Int J Adv Manuf Technol 97(5-8):2667–2674. https://doi.org/10.1007/s00170-018-2111-x

    Article  Google Scholar 

  22. Huang L, Luo WY, Liu XL, Li JJ (2013) Research on plastic flow behaviours for hole flanging part of aluminum alloy with large complicated profiles by electromagnetic forming. J Mech Eng 49 (24):24-29 + 38. (In Chinese) https://doi.org/CNKI:SUN:JXXB.0.2013-24-004

  23. Long AL, Wan M, Wang WP, Wu XD, Cui XX (2017) Research on controllability of final macroscopic specimen shape in electromagnetic superposed forming. Int J Adv Manuf Technol 94(5-8):2679–2688. https://doi.org/10.1007/s00170-017-1089-0

    Article  Google Scholar 

  24. Yu HP, Zheng QL, Wang SL, Wang Y (2018) The deformation mechanism of circular hole flanging by magnetic pulse forming. J Mater Process Technol 257:54–64. https://doi.org/10.1016/j.jmatprotec.2018.02.022

    Article  Google Scholar 

  25. Peng DC, Liu QXX, Li GY, Cui JJ (2019) Investigation on hybrid joining of aluminum alloy sheets: magnetic pulse weld bonding. Int J Adv Manuf Technol 104(9-12):4255–4264. https://doi.org/10.1007/s00170-019-04215-x

    Article  Google Scholar 

  26. Lei XP, Tan JQ, Zhan M, Gao PF (2017) Dependence of electromagnetic force on rib geometry in the electromagnetic forming of stiffened panels. Int J Adv Manuf Technol 94(1-4):217–226. https://doi.org/10.1007/s00170-017-0821-0

    Article  Google Scholar 

  27. Luo WY, Huang L, Li JJ, Liu XL, Wang ZQ (2014) A novel multi-layer coil for a large and thick-walled component by electromagnetic forming. J Mater Process Technol 214(11):2811–2819. https://doi.org/10.1016/j.jmatprotec.2014.05.023

    Article  Google Scholar 

  28. Yan SL, Yang H, Li HW, Yao X (2016) A unified model for coupling constitutive behaviour and micro-defects evolution of aluminum alloys under high-strain-rate deformation. Int J Plast 85:203–229. https://doi.org/10.1016/j.ijplas.2016.07.011

    Article  Google Scholar 

  29. Li HW, Yan SL, Zhan M, Zhang X (2019) Eddy current induced dynamic deformation behaviours of aluminum alloy during EMF: modeling and quantitative characterization. J Mater Process Technol 263:423–439. https://doi.org/10.1016/j.jmatprotec.2018.08.024

    Article  Google Scholar 

  30. Ma HJ, Huang L, Tian Y, Li JJ (2014) Effects of strain rate on dynamic mechanical behaviour and microstructure evolution of 5A02-O aluminum alloy. Mat Sci Eng A-Struct Mater Prop Microstruct Process 606:233–239. https://doi.org/10.1016/j.msea.2014.03.081

    Article  Google Scholar 

  31. Geng HH, Mao JQ, Zhang X, Li GY, Cui JJ (2018) Strain rate sensitivity of Al-Fe magnetic pulse welds. J Mater Process Technol 262:1–10. https://doi.org/10.1016/j.jmatprotec.2018.06.021

    Article  Google Scholar 

  32. Tian Y, Huang L, Ma HJ, Li JJ (2014) Establishment and comparison of four constitutive models of 5A02 aluminum alloy in high-velocity forming process. Mater Des 54:587–597. https://doi.org/10.1016/j.matdes.2013.08.095

    Article  Google Scholar 

  33. Liu XL, Huang L, Su HL, Ma F, Li JJ (2018) Comparative research on the rebound effect in direct electromagnetic forming and indirect electromagnetic forming with an elastic medium. Materials 11(8):1450. https://doi.org/10.3390/ma11081450

    Article  Google Scholar 

  34. Su HL, Huang L, Li JJ, Ma F, Huang P, Feng F (2018) Two-step electromagnetic forming: a new forming approach to local features of large-size sheet metal parts. Int J Mach Tools Manuf 124:99–116. https://doi.org/10.1016/j.ijmachtools.2017.10.005

    Article  Google Scholar 

  35. Zhang QX, Huang L, Li JJ, Feng F, Su HL, Ma F, Zhong K (2019) Investigation of dynamic deformation behaviour of large-size sheet metal parts under local Lorentz force. J Mater Process Technol 265:20–33. https://doi.org/10.1016/j.jmatprotec.2018.09.036

    Article  Google Scholar 

  36. Wang ZY, Huang L, Li JJ, Li XX, Zhu H, Ma F, Ma HJ, Cui JJ (2018) Microstructure and properties of friction stir welded 2219 aluminum alloy under heat treatment and electromagnetic forming process. Metals 8(5):305. https://doi.org/10.3390/met8050305

    Article  Google Scholar 

  37. Li XX, Huang L, Li JJ, Wang ZY (2017) Effects of compound technology of FSW and heat treatment on microstructures and properties of 2219 aluminum alloys. Chin Mech Eng 28:2880–2888. (In Chinese). https://doi.org/10.3969/j.issn.1004-132X.2017.23.016

    Article  Google Scholar 

  38. Brandt R, Neuer G (2007) Electrical resistivity and thermal conductivity of pure aluminum and aluminum alloys up to and above the melting temperature. Int of Thermophys 28(5):1429–1446. https://doi.org/10.1007/s10765-006-0144-0

    Article  Google Scholar 

  39. Li JJ, Qiu W, Huang L, Su HL, Tao H, Li PY (2018) Gradient electromagnetic forming (GEMF): a new forming approach for variable-diameter tubes by use of sectional coil. Int J Mach Tools Manuf 135:65–77. https://doi.org/10.1016/j.ijmachtools.2018.08.005

    Article  Google Scholar 

  40. Li HW, Yao X, Yan SL, He J, Zhan M, Huang L (2018) Analysis of forming defects in electromagnetic incremental forming of a large-size thin-walled ellipsoid surface part of aluminum alloy. J Mater Process Technol 255:703–715. https://doi.org/10.1016/j.jmatprotec.2018.01.024

    Article  Google Scholar 

  41. Ma HJ, Huang L, Li JJ, Duan XC, Ma F (2018) Effects of process parameters on electromagnetic sheet free forming of aluminum alloy. Int J Adv Manuf Technol 96(1-4):359–369. https://doi.org/10.1007/s00170-018-1589-6

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Analytical and Testing Center of Huazhong University of Science and Technology for its technical support.

Funding

This work was supported by the National Natural Science Foundation of China (51575206 and 51705169) and the Fundamental Research Funds for the Central University (2016YXZD055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Huang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Huang, L., Hong, X. et al. Research on the electromagnetic blanking based on force-free region deformation: simulation and experiments. Int J Adv Manuf Technol 108, 1751–1766 (2020). https://doi.org/10.1007/s00170-020-05472-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05472-x

Keywords

Navigation