Skip to main content

Control of macro-/microstructure and mechanical properties of a wire-arc additive manufactured aluminum alloy

Abstract

Wire-arc additive manufacturing (WAAM) has received considerable attention in the past years due to advantages in terms of deposition rate, design freedom, and buy-to-fly ratio. Particularly, cold metal transfer welding has been used extensively allowing for precise process control during manufacturing. Processing parameters have to be adjusted to advance this novel fabrication technique to meet the alloys’ requirements with the aim of meeting property goals and increasing microstructural homogeneity. In the present contribution, the alteration of the building strategy during WAAM of an aluminum alloy via variation of the polarity sequence is suggested. These parameters allow adjusting the heat input and, thus, the component’s temperature and cooling rate. Firstly, the quality of the surface is improved using adjusted deposition parameters. Secondly, a deposition strategy with a lower thermal exposure of the alloy provides a more homogeneous microstructure in terms of grain size, grain morphology, and distribution of second phases. Thirdly, the burn-off of volatile elements is reduced with decreasing heat input. The observed microstructural changes also result in more homogeneous local mechanical properties. It is demonstrated that the adjustment of the polarity sequence is a strong tool to influence the microstructure during WAAM enabling increased exploitation of this innovative technology.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Figure 4
Fig. 5
Fig. 6

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Herzog D, Seyda V, Wycisk E, Emmelmann C (2016) Additive manufacturing of metals. Acta Mater 117:371–392. https://doi.org/10.1016/j.actamat.2016.07.019

    Article  Google Scholar 

  2. Hebert RJ (2016) Viewpoint: metallurgical aspects of powder bed metal additive manufacturing. J Mater Sci 51:1165–1175. https://doi.org/10.1007/s10853-015-9479-x

  3. Cunningham CR, Wikshåland S, Xu F, Kemakolam N, Shokrani A, Dhokia V, Newman ST (2017) Cost modelling and sensitivity analysis of wire and arc additive manufacturing. Procedia Manuf 11:650–657. https://doi.org/10.1016/j.promfg.2017.07.163

    Article  Google Scholar 

  4. Ding D, Pan Z, Cuiuri D, Li H (2015) Wire-feed additive manufacturing of metal components: technologies, developments and future interests. Int J Adv Manuf Technol 81:465–481. https://doi.org/10.1007/s00170-015-7077-3

    Article  Google Scholar 

  5. Wu B, Pan Z, Ding D, Cuiuri D, Li H, Xu J, Norrish J (2018) A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement. J Manuf Process 35:127–139. https://doi.org/10.1016/j.jmapro.2018.08.001

    Article  Google Scholar 

  6. Bermingham M, StJohn D, Easton M, Yuan L, Dargusch M (2020) Revealing the mechanisms of grain nucleation and formation during additive manufacturing. JOM 72:1065–1073. https://doi.org/10.1007/s11837-020-04019-5

    Article  Google Scholar 

  7. Bai X, Colegrove P, Ding J, Zhou X, Diao C, Bridgeman P, Hönnige JR, Zhang H, Williams S (2018) Numerical analysis of heat transfer and fluid flow in multilayer deposition of PAW-based wire and arc additive manufacturing. Int J Heat Mass Transf 124:504–516. https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.085

  8. Oyama K, Diplas S, M’hamdi M et al (2019) Heat source management in wire-arc additive manufacturing process for Al-Mg and Al-Si alloys. Addit Manuf 26:180–192. https://doi.org/10.1016/j.addma.2019.01.007

    Article  Google Scholar 

  9. Wang H, Jiang W, Ouyang J, Kovacevic R (2004) Rapid prototyping of 4043 Al-alloy parts by VP-GTAW. J Mater Process Technol 148:93–102. https://doi.org/10.1016/j.jmatprotec.2004.01.058

    Article  Google Scholar 

  10. Takagi H, Sasahara H, Abe T, Sannomiya H, Nishiyama S, Ohta S, Nakamura K (2018) Material-property evaluation of magnesium alloys fabricated using wire-and-arc-based additive manufacturing. Addit Manuf 24:498–507. https://doi.org/10.1016/j.addma.2018.10.026

    Article  Google Scholar 

  11. Ho A, Zhao H, Fellowes JW, Martina F, Davis AE, Prangnell PB (2019) On the origin of microstructural banding in Ti-6Al4V wire-arc based high deposition rate additive manufacturing. Acta Mater 166:306–323. https://doi.org/10.1016/j.actamat.2018.12.038

    Article  Google Scholar 

  12. Colegrove PA, Donoghue J, Martina F, Gu J, Prangnell P, Hönnige J (2017) Application of bulk deformation methods for microstructural and material property improvement and residual stress and distortion control in additively manufactured components. Scr Mater 135:111–118. https://doi.org/10.1016/j.scriptamat.2016.10.031

    Article  Google Scholar 

  13. Bermingham MJ, StJohn DH, Krynen J et al (2019) Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing. Acta Mater 168:261–274. https://doi.org/10.1016/j.actamat.2019.02.020

    Article  Google Scholar 

  14. Froend M, Ventzke V, Dorn F, Kashaev N, Klusemann B, Enz J (2020) Microstructure by design: an approach of grain refinement and isotropy improvement in multi-layer wire-based laser metal deposition. Mater Sci Eng A 772:138635. https://doi.org/10.1016/j.msea.2019.138635

    Article  Google Scholar 

  15. Zhang C, Li Y, Gao M, Zeng X (2018) Wire arc additive manufacturing of Al-6 Mg alloy using variable polarity cold metal transfer arc as power source. Mater Sci Eng A 711:415–423. https://doi.org/10.1016/j.msea.2017.11.084

    Article  Google Scholar 

  16. Cong B, Ding J, Williams S (2014) Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al-6.3%Cu alloy. Int J Adv Manuf Technol 76:1593–1606. https://doi.org/10.1007/s00170-014-6346-x

    Article  Google Scholar 

  17. Ayarkwa KF, Williams SW, Ding J (2017) Assessing the effect of TIG alternating current time cycle on aluminium wire + arc additive manufacture. Addit Manuf 18:186–193. https://doi.org/10.1016/j.addma.2017.10.005

    Article  Google Scholar 

  18. Aucott L, Dong H, Mirihanage W, Atwood R, Kidess A, Gao S, Wen S, Marsden J, Feng S, Tong M, Connolley T, Drakopoulos M, Kleijn CR, Richardson IM, Browne DJ, Mathiesen RH, Atkinson HV (2018) Revealing internal flow behaviour in arc welding and additive manufacturing of metals. Nat Commun 9:1–7. https://doi.org/10.1038/s41467-018-07900-9

    Article  Google Scholar 

  19. Fang X, Zhang L, Chen G, Dang X, Huang K, Wang L, Lu B (2018) Correlations between microstructure characteristics and mechanical properties in 5183 aluminium alloy fabricated by wire-arc additive manufacturing with different arc modes. Materials (Basel) 11:2075. https://doi.org/10.3390/ma11112075

    Article  Google Scholar 

  20. Panchagnula JS, Simhambhatla S (2018) Manufacture of complex thin-walled metallic objects using weld-deposition based additive manufacturing. Robot Comput Integr Manuf 49:194–203. https://doi.org/10.1016/j.rcim.2017.06.003

    Article  Google Scholar 

  21. Morais P, Gomes B, Santos P et al (2020) Characterisation of a high-performance Al-Zn-Mg-Cu alloy designed for wire arc additive manufacturing. Materials (Basel) 13:1610. https://doi.org/10.3390/ma13071610

  22. Horgar A, Fostervoll H, Nyhus B, Ren X, Eriksson M, Akselsen OM (2018) Additive manufacturing using WAAM with AA5183 wire. J Mater Process Technol 259:68–74. https://doi.org/10.1016/j.jmatprotec.2018.04.014

    Article  Google Scholar 

  23. Geng H, Li J, Xiong J, Lin X (2016) Optimisation of interpass temperature and heat input for wire and arc additive manufacturing 5A06 aluminium alloy. Sci Technol Weld Join 22:1–12.https://doi.org/10.1080/13621718.2016.1259031

    Article  Google Scholar 

  24. Nie Y, Zhang P, Wu X, Li G, Yan H, Yu Z (2018) Rapid prototyping of 4043 Al-alloy parts by cold metal transfer. Sci Technol Weld Join 23:527–535. https://doi.org/10.1080/13621718.2018.1438236

    Article  Google Scholar 

  25. Wang L, Suo Y, Liang Z, Wang D, Wang Q (2019) Effect of titanium powder on microstructure and mechanical properties of wire + arc additively manufactured Al-Mg alloy. Mater Lett 241:231–234. https://doi.org/10.1016/j.matlet.2019.01.117

    Article  Google Scholar 

  26. Kurz W, Fisher DJ (1998) Fundamentals of solidification, 4th edn. Trans Tech Publications Ltd., Stafa-Zurich

    Book  Google Scholar 

  27. Cong B, Qi Z, Qi B et al (2017) Comparative study of additively manufactured thin wall and block structure with Al-6.3%Cu alloy using cold metal transfer process. Appl Sci 7:275. https://doi.org/10.3390/app7030275

  28. Asgar-Khan M, Medraj M (2009) Thermodynamic description of the Mg-Mn, Al-Mn and Mg-Al-Mn systems using the modified quasichemical model for the liquid phases. Mater Trans 50:1113–1122. https://doi.org/10.2320/matertrans.mra2008484

    Article  Google Scholar 

  29. Dinsdale A, Fang C, Que Z, Fan Z (2019) Understanding the thermodynamics and crystal structure of complex Fe Containing intermetallic phases formed on solidification of aluminium alloys. JOM 71:1731–1736. https://doi.org/10.1007/s11837-019-03380-4

    Article  Google Scholar 

  30. Katsas S, Nikolaou J, Papadimitriou G (2006) Microstructural changes accompanying repair welding in 5xxx aluminium alloys and their effect on the mechanical properties. Mater Des 27:968–975. https://doi.org/10.1016/j.matdes.2005.02.012

    Article  Google Scholar 

  31. Gomez Ortega A, Corona Galvan L, Salem M et al (2019) Characterisation of 4043 aluminium alloy deposits obtained by wire and arc additive manufacturing using a Cold Metal Transfer process. Sci Technol Weld Join 24:538–547. https://doi.org/10.1080/13621718.2018.1564986

    Article  Google Scholar 

  32. Qi Z, Cong B, Qi B, Sun H, Zhao G, Ding J (2018) Microstructure and mechanical properties of double-wire + arc additively manufactured Al-Cu-Mg alloys. J Mater Process Technol 255:347–353. https://doi.org/10.1016/j.jmatprotec.2017.12.019

    Article  Google Scholar 

  33. Ebenberger P, Uggowitzer PJ, Kirnstötter S, Gerold B, Zaefferer S, Pogatscher S (2019) Processing-controlled suppression of Lüders elongation in AlMgMn alloys. Scr Mater 166:64–67. https://doi.org/10.1016/j.scriptamat.2019.02.047

    Article  Google Scholar 

  34. Ou W, Mukherjee T, Knapp GL, Wei Y, DebRoy T (2018) Fusion zone geometries, cooling rates and solidification parameters during wire arc additive manufacturing. Int J Heat Mass Transf 127:1084–1094. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.111

    Article  Google Scholar 

  35. Wu J, Wang XQ, Wang W, Attallah MM, Loretto MH (2016) Microstructure and strength of selectively laser melted AlSi10Mg. Acta Mater 117:311–320. https://doi.org/10.1016/j.actamat.2016.07.012

    Article  Google Scholar 

  36. Zhang B, Zhang L, Wang C et al (2019) Microstructure and properties of Al alloy ER5183 deposited by variable polarity cold metal transfer. J Mater Process Technol 267:167–176. https://doi.org/10.1016/j.jmatprotec.2018.12.011

    Article  Google Scholar 

  37. Li G, Zhang C, Gao M, Zeng X (2014) Role of arc mode in laser-metal active gas arc hybrid welding of mild steel. Mater Des 61:239–250. https://doi.org/10.1016/j.matdes.2014.04.079

    Article  Google Scholar 

  38. Schmelzer J, Möller J, Slezov V V. (1995) Ostwald ripening in porous materials: The case of arbitrary pore size distributions. J Phys Chem Solids 56:1013–1022. https://doi.org/10.1016/0022-3697(95)00021-6

  39. Köhler M, Fiebig S, Hensel J, Dilger K (2019) Wire and arc additive manufacturing of aluminum. Metals (Basel) 9:608. https://doi.org/10.3390/met9050608

    Article  Google Scholar 

  40. Brandl E, Heckenberger U, Holzinger V, Buchbinder D (2012) Additive manufactured AlSi10Mg samples using selective laser melting (SLM): microstructure, high cycle fatigue, and fracture behavior. Mater Des 34:159–169. https://doi.org/10.1016/j.matdes.2011.07.067

    Article  Google Scholar 

  41. Mower TM, Long MJ (2016) Mechanical behavior of additive manufactured, powder-bed laser-fused materials. Mater Sci Eng A 651:198–213. https://doi.org/10.1016/j.msea.2015.10.068

    Article  Google Scholar 

  42. Biswal R, Zhang X, Syed AK, Awd M, Ding J, Walther F, Williams S (2019) Criticality of porosity defects on the fatigue performance of wire + arc additive manufactured titanium alloy. Int J Fatigue 122:208–217. https://doi.org/10.1016/j.ijfatigue.2019.01.017

    Article  Google Scholar 

  43. Gupta R, Chaudhari GP, Daniel BSS (2018) Strengthening mechanisms in ultrasonically processed aluminium matrix composite with in-situ Al3Ti by salt addition. Compos Part B Eng 140:27–34. https://doi.org/10.1016/j.compositesb.2017.12.005

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the LKR’s technical staff for their invaluable assistance and methodological expertise.

Code availability

Not applicable.

Funding

This work has been supported by the European Regional Development Fund (EFRE) in the framework of the EU-program “IWB Investition in Wachstum und Beschäftigung Österreich 2014-2020” and the federal state of Upper Austria.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Klein, T., Schnall, M. Control of macro-/microstructure and mechanical properties of a wire-arc additive manufactured aluminum alloy. Int J Adv Manuf Technol 108, 235–244 (2020). https://doi.org/10.1007/s00170-020-05396-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05396-6

Keywords

  • Advanced material processing
  • Wire-arc additive manufacturing
  • Property optimization
  • Microstructure design
  • Mechanical properties