Skip to main content
Log in

Determination of elastic constants of additive manufactured Inconel 625 specimens using an ultrasonic technique

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The nature of additive manufacturing (AM) processes prescribes direction-dependent properties of the final parts. The degree of material anisotropy is highly dependent on the process parameters and the machine setup which complicates the design of AM parts. A basic problem in the design and quality control of parts and components manufactured by the AM processes is the evaluation of the resulting elastic properties, specifically along the principal directions. In a destructive testing approach, many specimens in the principal directions are normally required to determine the elastic properties of a material. However, an alternative low-cost method based on the ultrasonic wave propagation velocities can also be used for this purpose. In this article, an ultrasonic-based method for the determination of the elastic constants of the Inconel 625 (IN625) material as manufactured via the laser powder-bed fusion process (L-PBF) is presented. Several specimens are fabricated with various process parameters such as laser power, scan speed, and hatch spacing, and nondestructively tested. The material elastic constants are then determined by measuring the ultrasonic wave velocities within the specimen. The results are verified qualitatively with the published results and destructive tensile tests. The obtained results showed a good correlation indicating the effectiveness of the proposed method for the determination of elastic constants of additively manufactured IN625 material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sola A, Nouri A (2019) Microstructural porosity in additive manufacturing: the formation and detection of pores in metal parts fabricated by powder bed fusion. J Adv Manuf Process 1(3):1–21. https://doi.org/10.1002/amp2.10021

    Article  Google Scholar 

  2. Liverani E, Toschi S, Ceschini L, Fortunato A (2017) Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel. J Mater Process Technol 249:255–263. https://doi.org/10.1016/j.jmatprotec.2017.05.042

    Article  Google Scholar 

  3. Pal S, Gubeljak N, Hudak R, Lojen G, Rajtukova V, Predan J, Kokol V, Drstvensek I (2019) Tensile properties of selective laser melting products affected by building orientation and energy density. Mat Sci Eng A 743:637–647. https://doi.org/10.1016/j.msea.2018.11.130

    Article  Google Scholar 

  4. Hovig EW, Azar AS, Grytten F, Sørby K, Andreassen E (2018) Determination of anisotropic mechanical properties for materials processed by laser powder bed fusion. Adv Mater Sci Eng 2018:7650303, 20 pages. https://doi.org/10.1155/2018/7650303

    Article  Google Scholar 

  5. Kok Y, Tan XP, Wang P, Nai MLS, Loh NH, Liu E, Tor SB (2018) Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: a critical review. Mater Des 139:565–586. https://doi.org/10.1016/j.matdes.2017.11.021

    Article  Google Scholar 

  6. Hitzler L, Hirsch J, Heine B, Merkel M, Hall W, Öchsner A (2017) On the anisotropic mechanical properties of selective laser-melted stainless steel. Materials 10:1136. https://doi.org/10.3390/ma10101136

    Article  Google Scholar 

  7. Jalili MM, Pirayeshfar AS, Mousavi SY (2010) Non-destructive acoustic test (NDAT) to determine elastic modulus of polymeric composites. In: EWGAE 2010, Vienna, 8th to 10th September

  8. Alfano M, Pagnotta L (2006) Determining the elastic constants of isotropic materials by modal vibration testing of rectangular thin plates. J Sound Vib 293(1–2):426–439. https://doi.org/10.1016/j.jsv.2005.10.021

    Article  Google Scholar 

  9. Frederiksen PS (1997) Experimental procedure and results for the identification of elastic constants of thick orthotropic plates. J Compos Mater 31(4):360–382. https://doi.org/10.1177/002199839703100403

    Article  Google Scholar 

  10. Gonzalez JA, Mireles J, Stafford SW, Perez MA, Terrazas CA, Wicker RB (2019) Characterization of Inconel 625 fabricated using powder-bed-based additive manufacturing technologies. J Mater Process Technol 264:200–210. https://doi.org/10.1016/j.jmatprotec.2018.08.031

    Article  Google Scholar 

  11. EOS Nickel Alloy IN625 Material Data Sheet. Electro Optical Systems. https://dmlstechnology.com/images/pdf/EOS_NickelAlloy_IN625.pdf

  12. Khan SZ, Khan TM, Joya YF, Khan MA, Ahmed S, Shah A (2015) Assessment of material properties of AISI 316L stainless steel using non-destructive testing. Nondestruct Test Eva 31(4):1–11. https://doi.org/10.1080/10589759.2015.1121265

    Article  Google Scholar 

  13. Hu E, Wang W (2016) The elastic constants measurement of metal alloy by using ultrasonic nondestructive method at different temperature. Math Probl Eng 2016:6762076–6762077. https://doi.org/10.1155/2016/6762076

    Article  Google Scholar 

  14. Van Buskirk WC, Cowin SC, Ward RN (1981) Ultrasonic measurement of orthotropic elastic constants of bovine femoral bone. J Biomech Eng 103:67–72. https://doi.org/10.1115/1.3138262

    Article  Google Scholar 

  15. Liao JJ, Hu T-B, Chang C-W (1997) Determination of dynamic elastic constants of transversely isotropic rocks using a single cylindrical specimen. Int J Rock Mech Min 34(7):1045–1054. https://doi.org/10.1016/S1365-1609(97)90198-2

    Article  Google Scholar 

  16. Svitek T, Vavryčuk V, Lokajíáek T, Petružálek M (2014) Determination of elastic anisotropy of rocks from P- and S-wave velocities: numerical modelling and lab measurements. Geophys J Int 199:1682–1697. https://doi.org/10.1093/gji/ggu332

    Article  Google Scholar 

  17. Mistou S, Karama M (2000) Determination of the elastic properties of composite materials by tensile testing and ultrasound measurement. J Compos Mater 34(20):1696–1709. https://doi.org/10.1106/UY4R-FG3H-HKGW-UD3Q

    Article  Google Scholar 

  18. Mah M, Schmitt DR (2003) Determination of the complete elastic stiffnesses from ultrasonic phase velocity measurements. J Geophys Res 108(B1):ECV 6-1–ECV 6-11. https://doi.org/10.1029/2001JB001586

    Article  Google Scholar 

  19. Wong RCK, Schmitt DR, Collis D, Gautam R (2008) Inherent transversely isotropic elastic parameters of over-consolidated shale measured by ultrasonic waves and their comparison with static and acoustic in situ log measurements. J Geophys Eng 5:103–117. https://doi.org/10.1088/1742-2132/5/1/011

    Article  Google Scholar 

  20. Gonҫalves R, Júnior MG, Lopes IM (2011) Determining the concrete stiffness matrix through ultrasonic testing. Eng Agríc Jaboticabal 31(3):427–437. https://doi.org/10.1590/S0100-69162011000300003

    Article  Google Scholar 

  21. Crespo J, Aira JR, Vázquez C, Guaita M (2017) Comparative analysis of the elastic constants measured via conventional ultrasound, and 3-D digital image correlation methods in eucalyptus globulus labill. BioResources 12(2):3728–3743. https://doi.org/10.15376/biores.12.2.3728-3743

    Article  Google Scholar 

  22. Foster DR, Dapino MJ, Babu SS (2013) Elastic constants of ultrasonic additive manufactured AL 3003-H18. Ultrasonics 53:211–218. https://doi.org/10.1016/j.ultras.2012.06.002

    Article  Google Scholar 

  23. Webersen M, Johannesmann S, Düchting J, Claes L, Henning B (2018) Guided ultrasonic waves for determining effective orthotropic material parameters of continuous-fiber reinforced thermoplastic plates. Ultrasonics 84:53–62. https://doi.org/10.1016/j.ultras.2017.10.005

    Article  Google Scholar 

  24. Castellano A, Foti P, Fraddosio A, Marzano S, Piccioni MD (2014) Mechanical characterization of CFRP composites by ultrasonic immersion tests: experimental and numerical approaches. Comp B: Eng 66:299–310. https://doi.org/10.1016/j.compositesb.2014.04.024

    Article  Google Scholar 

  25. Paterson DAP, Ijomah W, Windmill JFC (2018) Elastic constant determination of unidirectional composite via ultrasonic bulk wave through transmission measurements: a review. Prog Mater Sci 97:1–37. https://doi.org/10.1016/j.pmatsci.2018.04.001

    Article  Google Scholar 

  26. Zhan Y, Liu C, Kong X, Li Y (2018) Measurement of fiber reinforced composite engineering constants with laser ultrasonic. Appl Acoust 139:182–188. https://doi.org/10.1016/j.apacoust.2018.04.036

    Article  Google Scholar 

  27. Kersemans M, Martens A, Lammens N, Van Den Abeele K, Degrieck J, Zastavnik F, Pyl L, Sol H, Van Paepegem W (2014) Identification of the elastic properties of isotropic and orthotropic thin-plate materials with the pulsed ultrasonic polar scan. Exp Mech 54:1121–1132. https://doi.org/10.1007/s11340-014-9861-7

    Article  MATH  Google Scholar 

  28. Shukla A (2019) Determination of elastic constants of Inconel-625 superalloy, using laser-based ultrasonic. J Theor Appl Phys 13:49–54. https://doi.org/10.1007/s40094-018-0311-2

    Article  Google Scholar 

  29. Amado-Becker A, Ramos-Grez J, Yañez MJ, Vargas Y, Gaete L (2008) Elastic tensor stiffness coefficients for SLS Nylon 12 under different degrees of densification as measured by ultrasonic technique. Rapid Prototyp J 14(5):260–270. https://doi.org/10.1108/13552540810907929

    Article  Google Scholar 

  30. Malefane LB, du Preez WB, Maringa M (2016) Testing for homogeneity and orthotropy of Ti6Al4V (ELI) parts built by Direct Metal Laser Sintering. In: 17th Annual Conference of the Rapid Product Development Association of South Africa

  31. Van Buskirk WC, Cowin SC, Carter R Jr (1986) A theory of acoustic measurement of the elastic constants of a general anisotropic solid. J Mater Sci 21:2759–2762. https://doi.org/10.1007/BF00551484

    Article  Google Scholar 

  32. Summerscales J (2000) The bulk modulus of carbon fibers. J Mater Sci Lett 19:15–16. https://doi.org/10.1023/A:1006731210592

    Article  Google Scholar 

  33. Criales LE, Arısoy YM, Lane B, Moylan S, Donmez A, Özel T (2017) Laser powder bed fusion of nickel alloy 625: experimental investigations of effects of process parameters on melt pool size and shape with spatter analysis. Int J Mach Tool Manu 121:22–36. https://doi.org/10.1016/j.ijmachtools.2017.03.004

    Article  Google Scholar 

  34. ASME (2013) STD Sec V Article IV. American Society of Mechanical Engineers

  35. Anam MA, Pal D, Stucker B (2013) Modeling and experimental validation of nickel-based super alloy (Inconel 625) made using selective laser melting. In: Proceeding of the 24th Annual International Solid Free form Fabrication Symposium-An Additive Manufacturing Conference, Austin, TX, USA, 463–473. https://doi.org/10.13140/2.1.4009.1201

  36. Chen X, Schmitt DR, Kessler JA, Evans J, Kofman R (2015) Empirical relations between ultrasonic P-wave velocity, porosity and uniaxial compressive strength. CSEG RECORDER 40(5):24–29

    Google Scholar 

  37. Chawre B (2018) Correlations between ultrasonic pulse wave velocities and rock properties of quartz-mica schist. J Rock Mech Geotech Eng 10(3):594–602. https://doi.org/10.1016/j.jrmge.2018.01.006

    Article  Google Scholar 

  38. Manoylov AV, Borodich FM, Evans HP (2013) Modelling of elastic properties of sintered porous materials. P Roy Soc A 469:20120689. https://doi.org/10.1098/rspa.2012.0689

    Article  MATH  Google Scholar 

  39. Gong H, Rafi K, Gu H, Janaki Ram GD, Starr T, Stucker B (2015) Influence of defects on mechanical properties of Ti-6Al-4V components produced by selective laser melting and electron beam melting. Mater Des 86:545–554. https://doi.org/10.1016/j.matdes.2015.07.147

    Article  Google Scholar 

  40. Bräunig J, Töppel T, Müller B, Burkhardt M, Hipke T, Drossel W-G (2014) Advanced material studies for additive manufacturing in terms of future gear application. Adv Mech Eng 10 pages. https://doi.org/10.1155/2014/741083

  41. Brown CU, Jacob G, Stoudt M, Moylan S, Slotwinski J, Donmez A (2016) Interlaboratory study for nickel alloy 625 made by laser powder bed fusion to quantify mechanical property variability. J Mater Eng Perform 25(8):3390–3397. https://doi.org/10.1007/s11665-016-2169-2

    Article  Google Scholar 

  42. Arnold M, Boccaccini AR, Ondracek G (1996) Prediction of the Poisson’s ratio of porous materials. J Mater Sci 31(6):1643–1646. https://doi.org/10.1007/BF00357876

    Article  Google Scholar 

  43. ASTM F 3056: Standard specification for additive manufacturing nickel alloy (UNS N06625) with powder bed fusion, ASTM (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Javidrad.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javidrad, H.R., Salemi, S. Determination of elastic constants of additive manufactured Inconel 625 specimens using an ultrasonic technique. Int J Adv Manuf Technol 107, 4597–4607 (2020). https://doi.org/10.1007/s00170-020-05321-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05321-x

Keywords

Navigation