Skip to main content
Log in

Thermal modeling of single discharge in prospect of tool wear compensation in μEDM

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Due to the non-isoenergetic nature of discharge pulses in resistance-capacitance (RC) based micro electrical discharge machining (μEDM), the volume of produced micro-crater by each pulse varies significantly. This fact has driven the researchers in this work to propose an electrothermal principle–based analytical model to approximate dimensional accuracies of such micro-craters. A finite element (FE) simulation considering Gaussian heat flux distribution of single discharge μEDM has been performed at significant input parameters such as discharge energy, capacitance, and open-circuit voltage and compared with analytical simulation results. Upon validation of these simulated results with experimental results, nominal dimensional inaccuracies of 2–11% for a wide range of input parameters have been noticed. This effectively predicted crater dimension from the workpiece can be incorporated in the proposed thermal modeling–based real-time tool wear monitoring and compensation system through a unique strategy, which is discussed at the end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

μEDM:

Micro electrical discharge machining

CFD:

Computational fluid dynamics

DAQ:

Data acquisition card

EDS:

Energy dispersive spectroscopy

FE:

Finite element

FD:

Finite difference

MRR:

Material removal rate

PD:

Pulse discrimination

SR:

Surface roughness

SEM:

Scanning electron microscopy

TWR:

Tool wear rate

V MR :

Actual volume removal

V target :

Target volume

VRD:

Volume removal per discharge

c p :

Average specific heat (Jkg−1K−1.)

C :

Combination of fraction energy and a fraction of molten area (Dimensionless)

erfc :

Complementary error function (Dimensionless)

E P :

Energy of each pulse (μJ)

E :

Complete elliptic integrals of the second kind (Dimensionless)

h c :

Convective heat transfer coefficient (Wm−2K)

I a :

Average current (A)

J 0 :

Bessel function of the first kind of zero-order (Dimensionless)

J 1 :

Bessel function of the first kind of first-order (Dimensionless)

K t :

Thermal conductivity of the material (Wm−1K−1)

K :

Complete elliptic integrals of the first kind (Dimensionless)

L m :

Latent heat of melting (kJ/kg)

L V :

Latent heat of vaporization (kJ/kg)

N p :

Number of actual contributing pulses (Dimensionless)

q :

Heat flux (Wm−2)

R a :

Heat flux radius at anode (μm)

r :

Radial coordinates (μm)

R :

Heat flux radius (μm)

t :

Time in seconds (s)

T :

Temperature (K)

T s :

Solidus temperature (K)

T l :

Liquids temperature (K)

T 0 :

Ambient temperature (K)

t on :

Pulse on time (μs)

u :

Dimensionless radius (Dimensionless)

V a :

Average voltage (V)

V 0 :

Open circuit voltage (V)

α :

Thermal diffusivity of material (m2s−1)

λ :

Dummy variables (Dimensionless)

ρ :

Density of material (kgm−3)

θ :

Ratio of anode erosion rate (Dimensionless)

τ :

Dimensionless time (Dimensionless)

w :

Dimensionless depth (Dimensionless)

z :

Depth or axial coordinates (μm)

References

  1. Kaminski PC, Capuano MN (2003) Micro hole machining by conventional penetration electrical discharge machine. Int J Mach Tools Manuf 43:1143–1149. https://doi.org/10.1016/S0890-6955(03)00124-X

    Article  Google Scholar 

  2. Diver C, Atkinson J, Helml HJ, Li L (2004) Micro-EDM drilling of tapered holes for industrial applications. J Mater Process Technol 149:296–303. https://doi.org/10.1016/j.jmatprotec.2003.10.064

    Article  Google Scholar 

  3. Ho KH, Newman ST, Rahimifard S, Allen RD (2004) State of the art in wire electrical discharge machining (WEDM). Int J Mach Tools Manuf 43:287–300. https://doi.org/10.1016/j.ijmachtools.2004.04.017

    Article  Google Scholar 

  4. Nadda R, Nirala CK, Saha P (2019) Tool wear compensation in micro-EDM. In: Kibria G, Jahan M, Bhattacharyya B (eds) Micro-electrical discharge machining processes. Materials forming, machining and tribology. Springer, Singapore, pp 185–208. https://doi.org/10.1007/978-981-13-3074-2_9

  5. Nirala CK, Saha P (2016) Evaluation of μEDM-drilling and μEDM-dressing performances based on online monitoring of discharge gap conditions. Int J Adv Manuf Technol 85:1995–2012. https://doi.org/10.1007/s00170-015-7934-0

    Article  Google Scholar 

  6. Messler RW (2011) Overview of welding processes. Weld Fundam Process ASM Handb 6:13–26

    Google Scholar 

  7. Asad ABMA, Islam MT, Masaki T, Rahman M, Wong YS (2018) Analysis of micro-EDM electric characteristics employing plasma property. CIRP J Manuf Sci Technol 20:36–50. https://doi.org/10.1016/j.cirpj.2017.09.005

    Article  Google Scholar 

  8. Nirala CK, Saha P (2017) Precise μEDM-drilling using real-time indirect tool wear compensation. J Mater Process Technol 240:176–189. https://doi.org/10.1016/j.jmatprotec.2016.09.024

    Article  Google Scholar 

  9. Jung JW, Jeong YH, Min BK, Lee SJ (2008) Model-based pulse frequency control for micro-EDM milling using real-time discharge pulse monitoring. J Manuf Sci Eng 130:31106-1–31106-3110611. https://doi.org/10.1115/1.2917305

  10. Bissacco G, Valentincic J, Hansen HN, Wiwe BD (2010) Towards the effective tool wear control in micro-EDM milling. Int J Adv Manuf Technol 68:179–182. https://doi.org/10.1007/s00170-009-2057-0

    Article  Google Scholar 

  11. Bleys P, Kruth JP, Lauwers B, Zryd A, Delpretti R, Tricarico C (2002) Real-time tool wear compensation in milling EDM. CIRP Ann - Manuf Technol 51:157–160. https://doi.org/10.1016/S0007-8506(07)61489-9

    Article  Google Scholar 

  12. Narasimhan J, Yu Z, Rajurkar KP (2005) Tool wear compensation and path generation in micro and macro EDM. J Manuf Process 7:75–82. https://doi.org/10.1016/S1526-6125(05)70084-0

    Article  Google Scholar 

  13. Yan MT, Huang KY, Lo CY (2009) A study on electrode wear sensing and compensation in micro-EDM using machine vision system. Int J Adv Manuf Technol 42:1065–1073. https://doi.org/10.1007/s00170-008-1674-3

    Article  Google Scholar 

  14. Aligiri E, Yeo SH, Tan PC (2010) A new tool wear compensation method based on real-time estimation of material removal volume in micro-EDM. J Mater Process Technol 210:2292–2303. https://doi.org/10.1016/j.jmatprotec.2010.08.024

    Article  Google Scholar 

  15. Nadda R, Nirala CK (2019) Effect of single spark micro-EDM on crater size of different alloys. IOP Conf Ser Mater Sci Eng 561:012032. https://doi.org/10.1088/1757-899X/561/1/012032

    Article  Google Scholar 

  16. Chu X, Feng W, Wang C, Hong Y (2017) Analysis of mechanism based on two types of pulse generators in micro-EDM using single pulse discharge. Int J Adv Manuf Technol 89:3217–3230. https://doi.org/10.1007/s00170-016-9287-8

    Article  Google Scholar 

  17. Sarikavak Y, Cogun C (2012) Single discharge thermo-electrical modeling of micromachining mechanism in electric discharge machining. J Mech Sci Technol 26:1591–1597. https://doi.org/10.1007/s12206-012-0305-y

    Article  Google Scholar 

  18. Snoeys R, Dijck FSV (1971) Investigation of electro discharge machining operations by means of a thermo-mathematical model. CIRP Ann 20:35–37

    Google Scholar 

  19. Dijck VFS, Dutré WL (1974) Heat conduction model for the calculation of the volume of molten metal in electric discharges. J Phys D Appl Phys 7:899–910. https://doi.org/10.1088/0022-3727/7/6/316

    Article  Google Scholar 

  20. Eubank PT, Patel MR, Barrufet MA, Bozkurt B (1993) Theoretical models of the electrical discharge machining process. III. The variable mass, cylindrical plasma model. J Appl Phys 73:7900–7909. https://doi.org/10.1063/1.353942

    Article  Google Scholar 

  21. Dhanik S, Joshi SS (2005) Modelling of a single resistance capacitance pulse discharge in micro-electro discharge machining. J Manuf Sci Eng Trans ASME 127:759–767. https://doi.org/10.1115/1.2034512

    Article  Google Scholar 

  22. Hoang KT, Gopalan SK, Yang SH (2015) Study of energy distribution to electrodes in a micro-EDM process by utilizing the electro-thermal model of single discharges. J Mech Sci Technol 29:349–356. https://doi.org/10.1007/s12206-014-1241-9

    Article  Google Scholar 

  23. Wang K, Zhang Q, Zhu G, Liu Q, Huang Y, Zhang J (2017) Research on the energy distribution of micro EDM by utilization of electro-thermal model. Int J Adv Manuf Technol 93:4179–4186. https://doi.org/10.1007/s00170-017-0822-z

    Article  Google Scholar 

  24. Ming W, Zhang Z, Wang S, Zhang Y, Shen F, Zhang G (2019) Comparative study of energy efficiency and environmental impact in magnetic field assisted and conventional electrical discharge machining. J Clean Prod 214:12–28. https://doi.org/10.1016/j.jclepro.2018.12.231

    Article  Google Scholar 

  25. Beck JV (1981) Large time solutions for temperatures in a semi-infinite body with a disk heat source. Int J Heat Mass Transf 24:155–164. https://doi.org/10.1016/0017-9310(81)90104-6

    Article  Google Scholar 

  26. Pandey PC, Jilani ST (1986) Plasma channel growth and the resolidified layer in EDM. Precis Eng 8:104–110. https://doi.org/10.1016/0141-6359(86)90093-0

    Article  Google Scholar 

  27. Shahri HRF, Mahdavinejad R, Ashjaee M, Abdullah A (2017) A comparative investigation on temperature distribution in electric discharge machining process through analytical, numerical and experimental methods. Int J Mach Tools Manuf 114:35–53. https://doi.org/10.1016/j.ijmachtools.2016.12.005

    Article  Google Scholar 

  28. Gostimirovic M, Radovanovic M, Madic M, Rodic D, Kulundzic N (2018) Inverse electro-thermal analysis of the material removal mechanism in electrical discharge machining. Int J Adv Manuf Technol 97:1861–1871. https://doi.org/10.1007/s00170-018-2074-y

    Article  Google Scholar 

  29. Das S, Klotz M, Klocke F (2003) EDM simulation: finite element-based calculation of deformation, microstructure and residual stresses. J Mater Process Technol 142:434–451. https://doi.org/10.1016/S0924-0136(03)00624-1

    Article  Google Scholar 

  30. Marafona J, Chousal JAG (2006) A finite element model of EDM based on the joule effect. Int J Mach Tools Manuf 46:595–602. https://doi.org/10.1016/j.ijmachtools.2005.07.017

    Article  Google Scholar 

  31. Joshi SN, Pande SS (2010) Thermo-physical modelling of die-sinking EDM process. J Manuf Process 12:45–56. https://doi.org/10.1016/j.jmapro.2010.02.001

    Article  Google Scholar 

  32. Kalajahi MH, Ahmadi SR, Oliaei SNB (2013) Experimental and finite element analysis of EDM process and investigation of material removal rate by response surface methodology. Int J Adv Manuf Technol 69:687–704. https://doi.org/10.1007/s00170-013-5059-x

    Article  Google Scholar 

  33. Muralidharan B, Chelladurai H, Singh P, Roy MK (2016) Single-spark analysis of electro-discharge deposition process. Mater Manuf Process 31:1853–1864. https://doi.org/10.1080/10426914.2015.1127936

    Article  Google Scholar 

  34. Kuriachen B, Mathew J (2016) Spark radius modelling of resistance-capacitance pulse discharge in micro-electric discharge machining of Ti-6Al-4V: an experimental study. Int J Adv Manuf Technol 85:1983–1993. https://doi.org/10.1007/s00170-015-7999-9

    Article  Google Scholar 

  35. Klocke F, Mohammadnejad M, Zeis M, Klink A (2018) Investigation on the variability of existing models for simulation of local temperature field during a single discharge for electrical discharge machining (EDM). Procedia CIRP 68:260–265. https://doi.org/10.1016/j.procir.2017.12.059

    Article  Google Scholar 

  36. Assarzadeh S, Ghoreishi M (2017) Electro-thermal-based finite element simulation and experimental validation of material removal in static gap single spark die-sinking electro-discharge machining process. Proc Inst Mech Eng Part B J Eng Manuf 231:28–47. https://doi.org/10.1177/0954405415572661

    Article  Google Scholar 

  37. Das S, Paul S, Doloi B (2019) Application of CFD and vapor bubble dynamics for an efficient electro-thermal simulation of EDM: an integrated approach. Int J Adv Manuf Technol 102:1787–1800. https://doi.org/10.1007/s00170-018-3144-x

    Article  Google Scholar 

  38. Shobert EI (1983) What happens in EDM electrical discharge machining: tooling, methods, and applications. Society of Manufacturing Engineers, Dearborn, MI, pp 3–4

    Google Scholar 

  39. Yeo SH, Kurnia W, Tan PC (2007) Electro-thermal modelling of anode and cathode in micro-EDM. J Phys D Appl Phys 40:2513–2521. https://doi.org/10.1088/0022-3727/40/8/015

    Article  Google Scholar 

  40. Patel MR, Barrufet MA, Eubank PT, DiBitonto DD (1989) Theoretical models of the electrical discharge machining process. II. The anode erosion model. J Appl Phys 6964104-11. https://doi.org/10.1063/1.343995

  41. Carslaw HS, Jaeger JC Conduction of heat in solids. Clarendon, Oxford

  42. Thomas PH (1957) Some conduction problems in the heating of small areas on large solids. Q J Mech Appl Math 10:482–493. https://doi.org/10.1093/qjmam/10.4.482

    Article  MathSciNet  MATH  Google Scholar 

  43. Valencia JJ, Quested PN (2008) Thermophysical properties. ASM Handb Cast 15:468–481

    Google Scholar 

  44. Shao B, Rajurkar KP (2015) Modelling of the crater formation in micro-EDM. Procedia CIRP 33:376–381. https://doi.org/10.1016/j.procir.2015.06.085

    Article  Google Scholar 

Download references

Funding

The authors received financial support from the Department of Science and Technology (DST) Govt. of India (Grant No. ECR/DST/2017/000918)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrakant Kumar Nirala.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadda, R., Nirala, C.K. Thermal modeling of single discharge in prospect of tool wear compensation in μEDM. Int J Adv Manuf Technol 107, 4573–4595 (2020). https://doi.org/10.1007/s00170-020-05238-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05238-5

Keywords

Navigation