Skip to main content

Advertisement

Log in

Non-sorting multi-objective optimization of flexible roll forming using artificial neural networks

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The main defects due to flexible roll forming (FRF) processes include longitudinal bow and wrinkling. In this study, experimental and numerical analyses were performed using three different blank shapes to characterize the effects of the process parameters on defects in parts fabricated by FRF with and without leveling roll. Owing to the complexity of the FRF process, two algorithms were combined for its optimization. Artificial neural network-based Non-dominated Sorting Genetic Algorithm II (NSGA-II) was used to optimize the effective parameters of the FRF process, such as the sheet thickness, yield strength, and blank shape, with respect to the target bend angle to minimize the longitudinal bow and wrinkling of the product. The back-propagation neural network (BPNN) was used to identify two objective functions, while non-sorting multi-objective algorithm simulation was used to optimize the input parameters to minimize the objective functions. The results showed that the sheet thickness had the greatest effect on the minimization of the two objective functions, followed by the yield strength and blank shape, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Sweeney K, Grunewald U (2003) The application of roll forming for automotive structural parts. J Mater Process Technol 132(1–3):9–15. https://doi.org/10.1016/S0924-0136(02)00193-0

    Article  Google Scholar 

  2. Kim SY, Joo BD, Shin S, Van Tyne CJ, Moon YH (2013) Discrete layer hydroforming of three-layered tubes. Int J Mach Tool Manu 68(1):56–62. https://doi.org/10.1016/j.ijmachtools.2013.02.002

    Article  Google Scholar 

  3. Yan Y, Wang H, Li Q, Qian B, Mpofu K (2014) Simulation and experimental verification of flexible roll forming of steel sheets. Int J Adv Manuf Technol 72(1–4):209–220. https://doi.org/10.1007/s00170-014-5667-0

    Article  Google Scholar 

  4. Jeon CH, Han SW, Joo BD, Van Tyne CJ, Moon YH (2013) Deformation analysis for cold rolling of Al-Cu double layered sheet by the physical modeling and finite element method. Met Mater Int 19(5):1069–1076. https://doi.org/10.1007/s12540-013-5023-1

    Article  Google Scholar 

  5. Han SW, Woo YY, Hwang TW, Oh IY, Moon YH (2018) Tailor layered tube hydroforming for fabricating tubular parts with dissimilar thickness. Int J Mach Tool Manu 138:51–65. https://doi.org/10.1016/j.ijmachtools.2018.11.005

    Article  Google Scholar 

  6. Dadgar Asl Y, Sheikhi M, Pourkamali Anaraki A, Panahizadeh Rahimloo V, Hosseinpour Gollo M (2017) Fracture analysis on flexible roll forming process of anisotropic Al6061 using ductile fracture criteria and FLD. Int J Adv Manuf Technol 91(5–8):1481–1492. https://doi.org/10.1007/s00170-016-9852-1

    Article  Google Scholar 

  7. Qiu N, Li M, Li R (2016) The shape analysis of three-dimensional flexible rolling method. Proc Inst Mech Eng B J Eng Manuf 230(4):618–628. https://doi.org/10.1177/0954405414566056

    Article  Google Scholar 

  8. Woo YY, Han SH, Hwang TW, Park JY, Moon YH (2018a) Characterization of the longitudinal bow during flexible roll forming of steel sheets. J Mater Process Technol 252:82–794. https://doi.org/10.1016/j.jmatprotec.2017.10.048

    Article  Google Scholar 

  9. Kasaei MM, MoslemiNaeini H, Abbaszadeh B, Mohammadi M, Ghodsi M, Kiuchi M, Zolghadr R, Liaghat Gh, AziziTafti R, Salmani Tehrani M (2014) Flange wrinkling in flexible roll forming process, 11th International Conference on Technology of Plasticity, ICTP 2014, 19–24 October

  10. Farzin M, Salmani Tehrani M, Shameli E (2002) Determination of buckling limit of strain in cold roll forming by the finite element analysis. J Mater Process Technol 125–126:26–32. https://doi.org/10.1016/S0924-0136(02)00357-6

    Article  Google Scholar 

  11. Salmani Tehrani M, Hartley P, Moslemi Naeini H, Khademizadeh H (2006) Determination of buckling limit of strain in cold roll forming by the finite element analysis. Tin Wall Struct 44:184–196. https://doi.org/10.1016/S0924-0136(02)00357-6

    Article  Google Scholar 

  12. Gulceken E, Abeé A, Sedlmaier A, Livatyali H (2007) Finite element simulation of flexible roll forming, a case study on variable width U channel. 4th International Conference and Exhibition on Design and Production of Machines and Dies/Molds, Cesme, Turkey, Jun 21-23

  13. Larrinaga J, Galdos L (2009) Geometrical accuracy improvement of flexibly roll formed profiles by means of local heating. First International Congress on Roll Forming, Bilbao

  14. Mohammadi M, MoslemiNaeini H, Kasaei MM, Salmani Tehrani M, Abbaszadeh B (2014) Investigation of web warping of profiles with changing cross section inflexible roll forming process. Modares Mech Eng 14(6):72–80 (in Persian )

    Google Scholar 

  15. Jiao J, Rolfe B, Mendiguren J, Weiss M (2015) An analytical approach to predict web-warping and longitudinal strain in flexible roll formed sections of variable width. Int J Mech Sci 90:228–238. https://doi.org/10.1016/j.ijmecsci.2014.11.010

    Article  Google Scholar 

  16. Woo YY, Han SH, Oh IY, Moon YH (2018b) Shape defects in the flexible roll forming of automotive parts. Int J Automot Technol 20(2):227–236. https://doi.org/10.1007/s12239-019-0022-y

    Article  Google Scholar 

  17. Ona H, Shou I, Hoshi K (2012) On strain distributions in the formation of flexible channel section development of flexible cold roll forming machine. Int J Mater Res 576:137–140. https://doi.org/10.4028/www.scientific.net/AMR.576.137

    Article  Google Scholar 

  18. Park JC, Yang DY, Cha MH, Kim DG, Namb GB (2014) Investigation of a new incremental counter forming in flexible roll forming to manufacture accurate profiles with variable cross sections. Int J Mach Tool Manu:68–80. https://doi.org/10.1016/j.ijmachtools.2014.07.001

  19. Aissa Laouissi A, Yallese MA, Belbah A, Belhadi S, Haddad (2019) Investigation, modeling, and optimization of cutting parameters in turning of gray cast iron using coated and uncoated silicon nitride ceramic tools. Based on ANN, RSM, and GA optimization. Int J Adv Manuf Technol 101:523–548. https://doi.org/10.1007/s00170-018-2931-8

    Article  Google Scholar 

  20. Wiebenga JH, Weissb M, Rolfec B, van den Boogaard AH (2013) Product defect compensation by robust optimization of a cold roll forming process. J Mater Process Technol 213:978–986. https://doi.org/10.1016/j.jmatprotec.2013.01.006

    Article  Google Scholar 

  21. Radovanovic M (2019) Multi-objective optimization of multi-pass turning AISI 1064 steel. Int J Adv Manuf Technol 100:87–100. https://doi.org/10.1016/j.jmatprotec.2013.01.006

    Article  Google Scholar 

  22. Doriana MD’ Addona, Dario Antonelli (2018) Neural network multi objective optimization of hot forging. 11th CIRP Conference on Intelligent Computation in Manufacturing Engineering, 19-21 July, Ischia, Italy, Procedia CIRP 67:498–503

  23. Alizadeh A, Omrani H (2019) An integrated multi response Taguchi- neural network- robust data envelopment analysis model for CO2 laser cutting. Measurement 131:69–78. https://doi.org/10.1016/j.measurement.2018.08.054

    Article  Google Scholar 

  24. Bacanin N, Tuba M (2012) Artificial bee colony (ABC) algorithm for constrained optimization improved with genetic operators. Stud Inform Control 21(2):137–146. https://doi.org/10.24846/v21i2y201203

    Article  Google Scholar 

  25. Yazdi M, Latifi Rostami S, Kolahdooz A (2016) Optimization of geometrical parameters in a specific composite lattice structure using neural networks and ABC algorithm. J Mech Sci Technol 30(4):1763–1771. https://doi.org/10.1007/s12206-016-0332-1

    Article  Google Scholar 

  26. Yaghoobi A, Bakhshi-Jooybari M, Gorji A, Baseri H (2016) Application of adaptive neuro fuzzy inference system and genetic algorithm for pressure path optimization in sheet hydroforming process. Int J Adv Manuf Technol 86(9–12):2667–2677. https://doi.org/10.1007/s00170-016-8349-2

    Article  Google Scholar 

  27. Bui QV, Ponthot JP (2008) Numerical simulation of cold roll-forming processes. J Mater Process Technol 202(1–3):275–282. https://doi.org/10.1016/j.jmatprotec.2007.08.073

    Article  Google Scholar 

  28. Hajabdollahi Z, Hajabdollahi F, Mahdi T, Hajabdollahi H (2013) Thermo-economic environmental optimization of Organic Rankine Cycle for diesel waste heat recovery. Energy 63:142–151. https://doi.org/10.1016/j.energy.2013.10.046

    Article  Google Scholar 

  29. Deb K (2001) Multi-objective optimization using evolutionary algorithms. John Wiley & Sons, Hoboken

  30. Deb K, Goel T (2001) Controlled elitist non-dominated sorting genetic algorithms for better convergence. In: Proceedings of the first international conference on evolutionary multi-criterion optimization Zurich 67–81

  31. Kasprzak EM, Lewis KE (2001) Pareto analysis in multi objective optimization using the collinearity theorem and scaling method. Struct Multidiscip Optim 22:208–218. https://doi.org/10.1007/s001580100138

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1A5A6099595)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Hoon Moon.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadgar Asl, Y., Woo, Y.Y., Kim, Y. et al. Non-sorting multi-objective optimization of flexible roll forming using artificial neural networks. Int J Adv Manuf Technol 107, 2875–2888 (2020). https://doi.org/10.1007/s00170-020-05209-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05209-w

Keywords

Navigation