Skip to main content
Log in

Burr formation and its treatments—a review

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Burrs, being one of the most undesired obstructions generated during machining, affects work piece quality negatively in many aspects. Although deburring removes burrs, this extra process is time consuming, costly and might affect dimensional accuracy. This study investigates mechanisms, effects and variations on burr formation in most common machining processes such as drilling, milling, turning and grinding based on the information available in literature. The problems related to burrs as well as ways and methods to remove burr and control or minimize burr formation has critically discussed. Burrs can be minimised by selecting proper tool geometry, tool materials, coolant, machining parameters, work piece material, process planning and tool path design. As there is no method that can eliminate burr formation, thus deburring is essential to eliminate burrs after machining. Manual tools, abrasive blasting, abrasive flow, magnetic abrasive finishing, centrifugal barrel finishing, thermal melting and electrochemical effect are most commonly used for deburring depending on material, size and precision of parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Sreenivasulu R, Rao CS Overview on burr formation, simulation and experimental investigation of burr size—based on Taguchi design of experiments during drilling of alluminium 7075 Alloy

  2. Esnaola A (2015) Should i use a punch or paper drill for making tags? Available from: https://info.cfsbinds.com/tag/paper-drill-press/. Accessed 14 March 2020

  3. technologies, C.c. (2018) Drilled holes in carbon fiber and titanium stackups. Available from: http://coolclean.com/drilling-cfrp-stackups/drilled-holes/. Accessed 14 March 2020

  4. federalist (2007) Steel penetration of .223 bullets. Available from: http://emptormaven.com/2007/06/steel-penetration-of-223-bullets/. Accessed 14 March 2020

  5. Aurich JC et al (2009) Burrs—analysis, control and removal. CIRP Ann Manuf Technol 58(2):519–542

    Google Scholar 

  6. Koelsch JR (2001) Divining edge quality by reading the burrs. Quality 40(13):24

    Google Scholar 

  7. Pramanik A, Littlefair G (2014) Developments in machining of stacked materials made of CFRP and titanium/aluminum alloys. Mach Sci Technol 18(4):485–508

    Google Scholar 

  8. Chern G-L, Dornfeld DA (1996) Burr/breakout model development and experimental verification. J Eng Mater Technol 118(2):201–206

    Google Scholar 

  9. Guo Y, Dornfeld D (2000) Finite element modeling of burr formation process in drilling 304 stainless steel. J Manuf Sci Eng 122(4):612–619

    Google Scholar 

  10. Gaitonde V et al (2007) Methodology of Taguchi optimization for multi-objective drilling problem to minimize burr size. Int J Adv Manuf Technol 34(1–2):1–8

    Google Scholar 

  11. Gillespie L (1996) Standard terminology for researchers of burrs and edge finishing. WBTC STD-02

  12. Gillespie LK (1981) Deburring technology for improved manufacturing. Society of Manufacturing Engineers, Dearborn

    Google Scholar 

  13. Dhar N et al (2006) The influence of minimum quantity of lubrication (MQL) on cutting temperature, chip and dimensional accuracy in turning AISI-1040 steel. J Mater Process Technol 171(1):93–99

    Google Scholar 

  14. Kiswanto G, Zariatin D, Ko T (2014) The effect of spindle speed, feed-rate and machining time to the surface roughness and burr formation of aluminum alloy 1100 in micro-milling operation. J Manuf Process 16(4):435–450

    Google Scholar 

  15. Aramcharoen A, Mativenga P (2009) Size effect and tool geometry in micromilling of tool steel. Precis Eng 33(4):402–407

    Google Scholar 

  16. Lorincz J (2014) Innovative tools remove the jagged edges. Manuf Eng 153(4):63

    Google Scholar 

  17. Sung-Lim K, Dornfeld DA (1996) Analysis of fracture in burr formation at the exit stage of metal cutting. J Mater Process Technol 58(2–3):189–200

    Google Scholar 

  18. Pekelharing A (1980) Cutting tool damage in interrupted cutting. Wear 62(1):37–48

    Google Scholar 

  19. Gillespie LK (1999) Deburring and edge finishing handbook. Society of Manufacturing Engineers

  20. Hashimura M, Hassamontr J, Dornfeld D (1999) Effect of in-plane exit angle and rake angles on burr height and thickness in face milling operation. J Manuf Sci Eng 121(1):13–19

    Google Scholar 

  21. Niknam SA, Songmene V (2015) Milling burr formation, modeling and control: a review. Proc Inst Mech Eng B J Eng Manuf 229(6):893–909

    Google Scholar 

  22. Cheng K et al (2017) Modeling and simulation of material removal rates and profile accuracy control in abrasive flow machining of the integrally bladed rotor blade and experimental perspectives. J Manuf Sci Eng 139(12):121020

    Google Scholar 

  23. Huo, D., Micro-cutting: fundamentals and applications. 2013: John Wiley & Sons

  24. Gostimirović M et al (2015) Investigation of the cutting forces in creep-feed surface grinding process. J Prod Eng 18(1):21–24

    Google Scholar 

  25. Zhang Z et al (2015) Changes in surface layer of silicon wafers from diamond scratching. CIRP Ann 64(1):349–352

    Google Scholar 

  26. Zhang Z et al (2015) A novel approach of high speed scratching on silicon wafers at nanoscale depths of cut. Sci Rep 5:16395

    Google Scholar 

  27. Wang B, Zhang Z, Chang K, Cui J, Rosenkranz A, Yu J, Lin CT, Chen G, Zang K, Luo J, Jiang N, Guo D (2018) New deformation-induced nanostructure in silicon. Nano Lett 18(7):4611–4617

    Google Scholar 

  28. Zhang Z et al (2017) A novel approach of mechanical chemical grinding. J Alloys Compd 726:514–524

    Google Scholar 

  29. Zhang Z et al (2017) Nanoscale wear layers on silicon wafers induced by mechanical chemical grinding. Tribol Lett 65(4):132

    Google Scholar 

  30. Zhang Z et al (2017) A novel approach of high-performance grinding using developed diamond wheels. Int J Adv Manuf Technol 91(9–12):3315–3326

    Google Scholar 

  31. Aurich J, Sudermann H, Bil H (2005) Characterisation of burr formation in grinding and prospects for modelling. CIRP Ann Manuf Technol 54(1):313–316

    Google Scholar 

  32. Pramanik A et al (2019) Burr formation during drilling of mild steel at different machining conditions. Mater Manuf Process 34(7):726–735

    Google Scholar 

  33. Pramanik A, et al (2020) Optimization of accuracy and surface finish of drilled holes in 350 mild steel, in optimization of manufacturing processes, Springer. p. 65–90

  34. Min S, et al (2001) Finite element modeling of burr formation in metal cutting

  35. Kim J, Dornfeld DA (2002) Development of an analytical model for drilling Burr formation in ductile materials. J Eng Mater Technol 124(2):192–198

    Google Scholar 

  36. Costa ES, Silva MBd, Machado AR (2009) Burr produced on the drilling process as a function of tool wear and lubricant-coolant conditions. J Braz Soc Mech Sci Eng 31:57–63

    Google Scholar 

  37. Wang GC, Zhang CY (2004) Study on the forming mechanism of the cutting-direction burr in metal cutting. In Key Engineering Materials. Trans Tech Publ

  38. Avila MC, Dornfeld DA (2004) On the face milling burr formation mechanisms and minimization strategies at high tool engagement

  39. Schäfer F (1978) Gratbildung und Entgraten beim Umfangsstirnfräsen. VDI-Zeitschrift 120(1–2):47–55

    Google Scholar 

  40. Bansal A (2001) Comprehensive approach to burr prediction. 2001-2002 LMA Annual Reports

  41. Lee K, Dornfeld DA (2005) Micro-burr formation and minimization through process control. Precis Eng 29(2):246–252

    Google Scholar 

  42. Olvera O, Barrow G (1996) An experimental study of burr formation in square shoulder face milling. Int J Mach Tools Manuf 36(9):1005–1020

    Google Scholar 

  43. Chern G-L (2006) Experimental observation and analysis of burr formation mechanisms in face milling of aluminum alloys. Int J Mach Tools Manuf 46(12–13):1517–1525

    Google Scholar 

  44. Jones S, Furness R (1997) An experimental study of burr formation for face milling 356 aluminum. Trans N Am Manuf Res Instit SME 183–188

  45. Kishimoto W (1981) Study of burr formation in face milling-conditions for the secondary burr formation. Bull Japan Soc Prec Eng 15(1):51

    Google Scholar 

  46. Kawamura S, Yamakawa J (1989) Formation and growing up process of grinding burrs. Bull Japan Soc Precis Eng 23(3):194–199

    Google Scholar 

  47. Hofman P, Kvasnicka I (1999) A study of grinding burrs formation. Abras Mag 29–33

  48. Pilný L et al (2012) Hole quality and burr reduction in drilling aluminium sheets. CIRP J Manuf Sci Technol 5(2):102–107

    Google Scholar 

  49. Stein J, Dornfeld D (1996) Influence of workpiece exit angle on burr formation in drilling intersecting holes. Trans N Am Manuf Res Instit SME:39–44

  50. Stein JM, Dornfeld DA (1997) Burr formation in drilling miniature holes. CIRP Ann 46(1):63–66

    Google Scholar 

  51. Heisel U, Eggert U, Luik M (1998) Kurzlochbohren ohne grate. Die Maschine—dima 52(3):54–58

    Google Scholar 

  52. Dornfeld D et al (1999) Drilling burr formation in titanium alloy, Ti-6AI-4V. CIRP Ann Manuf Technol 48(1):73–76

    Google Scholar 

  53. Basavarajappa S et al (2006) Analysis of burr formation during drilling of hybrid metal matrix composites using design of experiments. Int J Mach Mach Mater 1(4):500–510

    Google Scholar 

  54. De Souza A et al (2003) Burr formation in face milling of cast iron with different milling cutter systems. Proc Inst Mech Eng B J Eng Manuf 217(11):1589–1596

    Google Scholar 

  55. Donkee W (2019) Available from: https://www.wonkeedonkeetools.co.uk/de-burring-tools/what-are-the-types-of-burr/

  56. Gillespie LK, Blotter P (1976) The formation and properties of machining burrs. J Eng Indust 98(1):66–74

    Google Scholar 

  57. Kim J, Min S, Dornfeld DA (2001) Optimization and control of drilling burr formation of AISI 304L and AISI 4118 based on drilling burr control charts. Int J Mach Tools Manuf 41(7):923–936

    Google Scholar 

  58. Dornfeld D, Min S (2010) A review of burr formation in machining. Springer, Berlin

    Google Scholar 

  59. Leopold J, Schmidt G (2004) Methods of burr measurement and burr detection. VDI Ber 223–230

  60. Shimokura K-I, Liu S (1994) Programming deburring robots based on human demonstration with direct burr size measurement. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation. IEEE

  61. Latimer W (2015) Understanding laser-based 3D triangulation methods. Vision Systems Design

  62. Lee S-H (1999) Burr size measurement using a capacitance sensor. J Kor Soc Manuf Technol Eng 8(4):29–37

    Google Scholar 

  63. Jagiella M, Fericean S (2004) Inductive sensor system for evaluation of burrs and edges in industrial application. In Proc. of the 7th International Conference on Deburring and Surface Finishing

  64. Hassamontr J, Blondaz L, Dornfeld DA (1998) Avoiding exit burr in CNC end milling by an adapted tool path. in Symposium on Concurrent Design of Product and Manufacturing Processes ASME

  65. Sokolowski A, Narayanaswami R, Dornfeld D (1994) Prediction of burr size using neural networks and fuzzy logic. in Japan–USA symposium on Flexible Automation

  66. Park I (1996) Modeling of burr formation processes in metal cutting. Univeristy of California, Berkeley

    Google Scholar 

  67. Chu C-H, Dornfeld D (2000) Tool path planning for avoiding exit burrs. J Manuf Process 2(2):116–123

    Google Scholar 

  68. Bansal A (2002) Burr prediction system for face milling operation masters report. University of California at Berkeley, CA

    Google Scholar 

  69. Clark J, Massarsky M, Davidson DA (2006) ‘It's the finish that counts’: edge and surface finish can be important factors in driving part performance of metal parts. Met Finish 104(5):24–29

    Google Scholar 

  70. Dornfeld D (2004) Strategies for preventing and minimizing burr formation

  71. Ramachandran N, Pande S, Ramakrishnan N (1994) The role of deburring in manufacturing: a state-of-the-art survey. J Mater Process Technol 44(1–2):1–13

    Google Scholar 

  72. Hockauf W (2002) Burr reduction investment—production costs—burr reduction—prediction of burrs. CIRP HPC Workshop, Paris

    Google Scholar 

  73. Chang SS, Bone GM (2005) Burr size reduction in drilling by ultrasonic assistance. Robot Comput Integr Manuf 21(4–5):442–450

    Google Scholar 

  74. Moriwaki T, Tangjitsitcharoen S, Shibasaka T (2006) Development of intelligent monitoring and optimization of cutting process for CNC turning. Int J Comput Integr Manuf 19(5):473–480

    Google Scholar 

  75. Sun, J.-w., et al., Reliability modeling and analysis of serial-parallel hybrid multi-operational manufacturing system considering dimensional quality, tool degradation and system configuration. Int J Prod Econ, 2008. 114(1): p. 149–164

  76. Sun J et al (2009) Integration of product quality and tool degradation for reliability modelling and analysis of multi-station manufacturing systems. Int J Comput Integr Manuf 22(3):267–279

    Google Scholar 

  77. Davidson DA (2007) Surface condition impacts part performance: burrs, edges can negatively influence function of components. Met Finish 105(2):22–31

    Google Scholar 

  78. Söderlund A (2017) Influence of surface flatness on bolted flanges: fatigue strength limit

  79. Nakayama K, Arai M (1987) Burr formation in metal cutting. CIRP Ann 36(1):33–36

    Google Scholar 

  80. Abdelhafeez A et al (2015) Burr formation and hole quality when drilling titanium and aluminium alloys. Procedia CIRP 37:230–235

    Google Scholar 

  81. Gaitonde V et al (2008) Genetic algorithm-based burr size minimization in drilling of AISI 316L stainless steel. J Mater Process Technol 197(1–3):225–236

    Google Scholar 

  82. Narayanaswami R, Dornfeld D (1997) Burr minimization in face milling: a geometric approach. J Manuf Sci Eng 119(2):170–177

    Google Scholar 

  83. Chu C-H, Dornfeld D (2005) Geometric approaches for reducing burr formation in planar milling by avoiding tool exits. J Manuf Process 7(2):182–195

    Google Scholar 

  84. Rangarajan A, Chu C-H, Dornfeld D (2000) Avoiding tool exit in planar milling by adjusting width of cut. In: Proceedings of the ASME

  85. Rangarajan A (2001) Priority based tool path planning for face milling. MSc thesis, Uni-versity of California at Berkeley, USA

  86. Rangarajan A (2005) Optimization of face milling process: tool path and process planning techniques. University of California, Berkeley

    Google Scholar 

  87. Tripathi S, Dornfeld DA (2006) Review of geometric solutions for milling burr prediction and minimization. Proc Inst Mech Eng B J Eng Manuf 220(4):459–466

    Google Scholar 

  88. Shefelbine W, Dornfeld D (2004) Influences on burr size during face-milling of aluminum alloys and cast iron

  89. Rahman M, Kumar AS, Salam M (2002) Experimental evaluation on the effect of minimal quantities of lubricant in milling. Int J Mach Tools Manuf 42(5):539–547

    Google Scholar 

  90. Gillespie L (1980) Deburring: technical capabilities and cost-effective approaches. Lessons 5 and 6. Bendix Corp., Kansas City

    Google Scholar 

  91. Ioi, T. (1981) Computer aided selection of deburring methods. SME Tech. Paper, p MR81–389

  92. Sankar MR, Jain V, Ramkumar J (2011) Abrasive flow machining (AFM): an overview. Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, pp 1–8

    Google Scholar 

  93. Przyklenk K, Schlatter M (1985) Vergleich und Einsatzbedingungen von Entgratverfahren. Industrie Anzeiger 107(14):36–37

    Google Scholar 

  94. Gillespie L (1979) Deburring precision miniature parts. Precis Eng 1(4):189–198

    Google Scholar 

  95. Cho C-H, Kim K-H (2012) Design of a deburring tool for intersecting holes in aluminum alloys. J Mater Process Technol 212(5):1132–1138

    Google Scholar 

  96. Kim KH et al (2003) Drilling and deburring in a single process. Proc Inst Mech Eng B J Eng Manuf 217(9):1327–1331

    Google Scholar 

  97. Niknam SA et al (2018) Mechanical deburring and edge-finishing processes for aluminum parts—a review. Int J Adv Manuf Technol 95(1–4):1101–1125

    Google Scholar 

  98. Kuboyama M, Iwanabe M, Suzuki M (1993) Wet abrasive blasting apparatus using pressurized slurry. Google Patents

  99. Leong KF et al (1998) Abrasive jet deburring of jewellery models built by stereolithography apparatus (SLA). J Mater Process Technol 83(1–3):36–47

    Google Scholar 

  100. Brar B (2017) Latest trends in abrasive flow machining process. J Adv Res Prod Indust Eng 4(1&2):20–25

    Google Scholar 

  101. Kim J-D, Kim K-D (2004) Deburring of burrs in spring collets by abrasive flow machining. Int J Adv Manuf Technol 24(7–8):469–473

    Google Scholar 

  102. Shinmura T et al (1990) Study on magnetic abrasive finishing. CIRP Ann 39(1):325–328

    Google Scholar 

  103. Khairy AB (2001) Aspects of surface and edge finish by magnetoabrasive particles. J Mater Process Technol 116(1):77–83

    Google Scholar 

  104. Yin S, Shinmura T (2004) Vertical vibration-assisted magnetic abrasive finishing and deburring for magnesium alloy. Int J Mach Tools Manuf 44(12–13):1297–1303

    Google Scholar 

  105. Singh S, Shan H (2002) Development of magneto abrasive flow machining process. Int J Mach Tools Manuf 42(8):953–959

    Google Scholar 

  106. Kim J-D et al (1997) Development of a magnetic abrasive jet machining system for precision internal polishing of circular tubes. J Mater Process Technol 71(3):384–393

    Google Scholar 

  107. Kobayashi H (1978) Automatic centrifugal barrel finishing machine. Google Patents

  108. Kobayashi H (1974) Automatic centrifugal barrel finishing apparatus. Google Patents

  109. Matsunaga M (1967) Theory and experiments on centrifugal barrel finishing. Int J Prod Res 5(4):275–287

    Google Scholar 

  110. Jeong YH et al (2009) Deburring microfeatures using micro-EDM. J Mater Process Technol 209(14):5399–5406

    Google Scholar 

  111. Bozhko VP, et al (1989) Method of thermal deburring of metal parts. Google Patents

  112. Johnstone RT, et al (1977) Thermal deburring unit. Google Patents

  113. Leisner E (1983) Deburring chamber for thermal deburring. Google Patents

  114. Goyal P (2017) Sharp-edged and burr-free with thermal deburring. Available from: https://www.oemupdate.com/machine-tools/sharp-edged-and-burr-free-with-thermal-deburring/

  115. Lee SH (2000) Analysis of precision deburring using a laser—an experimental study and FEM simulation. KSME Int J 14(2):141–151

    Google Scholar 

  116. Jameson EC (2001) Electrical discharge machining. Society of Manufacturing Engineers

  117. Abbas NM, Yusoff N, Mahmod R (2012) Electrical discharge machining (EDM): practices in Malaysian industries and possible change towards green manufacturing. Proc Eng 41:1684–1688

    Google Scholar 

  118. Kurane S, Dabade U (2011) Burr removal in drilled holes by EDM process. in Proceedings of International Conference on Current Trends Technology,‘NUiCONE–2011’Organised by Institute of Technology, Nirma University, Ahmadabad–382

  119. Liao Y-S, Chen S-T, Lin C-S (2004) Development of a high precision tabletop versatile CNC wire-EDM for making intricate micro parts. J Micromech Microeng 15(2):245

    Google Scholar 

  120. Masuzawa T (2000) State of the art of micromachining. CIRP Ann 49(2):473–488

    Google Scholar 

  121. Kunieda M et al (2007) Study on nano EDM using capacity coupled pulse generator. CIRP Ann 56(1):213–216

    Google Scholar 

  122. Sarkar S, Mitra S, Bhattacharyya B (2004) Mathematical modeling for controlled electrochemical deburring (ECD). J Mater Process Technol 147(2):241–246

    Google Scholar 

  123. Mishra P (2018) Electrochemical deburring. Available from: https://www.mechanicalbooster.com/2018/10/electrochemical-deburring.html

  124. Bhattacharyya B, Munda J, Malapati M (2004) Advancement in electrochemical micro-machining. Int J Mach Tools Manuf 44(15):1577–1589

    Google Scholar 

  125. Pallardy R (2017) Cryogenics. Available from: https://www.britannica.com/science/cryogenics

  126. Stearns DT (2000) Cryogenic deflashing apparatus. Google Patents

  127. Karpuschewski B et al (2013) Cryogenic wet-ice blasting—process conditions and possibilities. CIRP Ann 62(1):319–322

    Google Scholar 

  128. Kerwin WS, Nelson JR, Toll HR (1975) Cryogenic deflashing apparatus. Google Patents

  129. Azarhoushang B, Akbari J (2007) Ultrasonic-assisted drilling of Inconel 738-LC. Int J Mach Tools Manuf 47(7–8):1027–1033

    Google Scholar 

  130. Takeyama H, Kato S (1991) Burrless drilling by means of ultrasonic vibration. CIRP Ann 40(1):83–86

    Google Scholar 

  131. Kadivar MA, et al (2012) Burr size reduction in drilling of Al/SiC metal matrix composite by ultrasonic assistance. In Advanced Materials Research. Trans Tech Publ

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pramanik.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, S.Y., Pramanik, A., Basak, A.K. et al. Burr formation and its treatments—a review. Int J Adv Manuf Technol 107, 2189–2210 (2020). https://doi.org/10.1007/s00170-020-05203-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05203-2

Keywords

Navigation