Skip to main content
Log in

Mathematical model for vertical rolling deformation based on energy method

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

An approach to analyzing three-dimensional vertical rolling is presented on the basis of energy method. The double parabola function model is applied to describe dog bone shape in the deformed region between the vertical rolls. The DSF (dual stream function) method is utilized to obtain three-dimensional velocity and strain rate fields. The values of dog bone shape dimensions and roll force are obtained when the total power functional achieves minimum, which is received according to double parabola model, velocity field, and the first variational principle. The validity of the proposed approach is discussed by contradistinguishing the present predictions with other models’ results and measured data in a hot strip plant in miscellaneous rolling conditions. Moreover, the impacts of different rolling conditions on the dog bone shape and stress state coefficient are researched, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

W0, WE :

Half of the initial and final slab width at entrance and exit

ΔW :

Half of the reduction, ΔW = W0WE

W x :

Half of the width in deformation zone.

ΔWx :

Half of the width reduction in deformation zone, ΔWx = W0Wx

h 0 :

Half of the initial slab thickness at entrance

hI, hII, hIII :

Half of slab thickness in zone I, II and III

h bx :

Peak height of dog bone, hbx = h0 + 2βh0ΔWx/Ax

h rx :

Edge height of dog bone, hrx = h0 + βh0ΔWx/Ax

R :

Radius of work roll

l :

Projected length of roll slab contact arc

v 0 :

Inlet velocity of slab

v R :

Roll speed

θ :

Bite angle, θ = sin−1(l/R)

α :

Contact angle

A,β :

Undetermined parameters

A x :

Width parameter

U :

Flow volume per second

ϕ, ψ :

Stream functions

vx, vy, vz :

Components of velocity vector

U :

Flow volume per second, U = 3v0h0A0

J :

Total power

W i :

Internal plastic deformation power

W f :

Friction power

W s :

Shear power

σs :

Material yield stress

k :

Yield shear stress, \( k={\upsigma}_s/\sqrt{3} \)

m :

Friction factor

J * min :

Minimum value of total power

M :

Roll torque

F :

Roll force

n σ :

Stress state coefficient

χ :

Arm factor

x, y, z :

The directions of length, thickness, and width

References

  1. Liu YM, Zhang DH, Zhao DW, Sun J (2016) Analysis of vertical rolling using double parabolic model and stream function velocity field. Int J Adv Manuf Technol 82(5–8):1153–1161. https://doi.org/10.1007/s00170-015-7393-7

    Article  Google Scholar 

  2. Sun J, Liu YM, Wang QL, Hu YK, Zhang DH (2018) Mathematical model of lever arm coefficient in cold rolling process. Int J Adv Manuf Technol 97(5–8):1847–1859

    Article  Google Scholar 

  3. Shibahara T, Misaka Y, Kono T, Koriki M, Takemoto H (1981) Edger set-up model at roughing train in a hot strip mill. Tetsu-to-Hagane 67(15):2509–2151

    Article  Google Scholar 

  4. Okado M, Ariizumi T, Noma Y, Yabuuchi K, Yamazaki Y (1981) Width behaviour of the head and tail of slabs in edge rolling in hot strip mills. Tetsu-to-Hagane 67(15):2516–2525

    Article  Google Scholar 

  5. Tazoe N, Honjyo H, Takeuchi M, Ono T (1984) New forms of hot strip mill width rolling installations. In: AISE spring conference. Dearborn, Assn Iron Steel Engineers, Pittsburgh, pp 85–88

    Google Scholar 

  6. Ginzburg VB, Kaplan N, Bakhtar F, Tabone CJ (1991) Width control in hot strip mills. Iron and Steel Engineer 68(6):25–39

    Google Scholar 

  7. Xiong SW, Zhu XL, Liu XH, Wang G, Zhang Q, Li H, Meng X, Han L (1997) Mathematical model of width reduction process of roughing trains of hot strip mills. Shanghai Metal 19(1):39–43

    Google Scholar 

  8. Xiong SW, Rodrigues JMC, Martins PAF (2003) Three-dimensional modelling of the vertical-horizontal rolling process. Finite Elem Anal Des 39(11):1023–1037. https://doi.org/10.1016/s0168-874x(02)00154-3

    Article  Google Scholar 

  9. Yun D, Lee D, Kim J, Hwang S (2012) A new model for the prediction of the dog bone shape in steel mills. ISIJ Int 52(6):1109–1117

    Article  Google Scholar 

  10. Lugora C, Bramley A (1987) Analysis of spread in ring rolling. Int J Mech Sci 29(2):149–157

    Article  Google Scholar 

  11. Hill R (1963) A general method of analysis for metal-working processes. J Mech Phys Solids 11(5):305–326

    Article  Google Scholar 

  12. Nagpal V (1977) On the solution of three-dimensional metal-forming processes. J Manuf Sci E 99(3):624–629

    Google Scholar 

  13. Hwang YM, Hsu HH, Tzou GY (1998) A study of PSW rolling process using stream functions. J Mater Process Technol 80-81:341–344. https://doi.org/10.1016/s0924-0136(98)00145-9

    Article  Google Scholar 

  14. Aksakal B, Sezek S, Can Y (2005) Forging of polygonal discs using the dual stream functions. Mater Design 26(8):643–654. https://doi.org/10.1016/j.matdes.2004.09.005

    Article  Google Scholar 

  15. Sezek S, Aksakal B, Can Y (2008) Analysis of cold and hot plate rolling using dual stream functions. Mater Design 29(3):584–596. https://doi.org/10.1016/j.matdes.2007.03.005

    Article  Google Scholar 

  16. Yih CS (1957) Stream functions in three-dimensional flows. La Houille Blanche 3:445–450

    MathSciNet  Google Scholar 

  17. Tabatabaei SA, Abrinia K, Givi MKB (2014) Application of equi-potential lines method for accurate definition of the deforming zone in the upper-bound analysis of forward extrusion problems. Int J Adv Manuf Technol 72(5–8):1039–1050. https://doi.org/10.1007/s00170-014-5647-4

    Article  Google Scholar 

  18. Abrinia K, Mirnia MJ (2009) A new generalized upper-bound solution for the ECAE process. Int J Adv Manuf Technol 46(1–4):411–421. https://doi.org/10.1007/s00170-009-2103-y

    Article  Google Scholar 

  19. Kobayashi S, Oh SI, Altan T (1989) Metal forming and the finite-element method. Oxford University Press, New York

    Google Scholar 

  20. Hua L, Deng JD, Qian DS, Ma Q (2015) Using upper bound solution to analyze force parameters of three-roll cross rolling of rings with small hole and deep groove. Int J Adv Manuf Technol 76(1-4):353–366. https://doi.org/10.1007/s00170-014-6107-x

    Article  Google Scholar 

  21. Zhang DH, Liu YM, Sun J, Zhao DW (2016) A novel analytical approach to predict rolling force in hot strip finish rolling based on cosine velocity field and equal area criterion. Int J Adv Manuf Technol 84(5–8):843–850

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. M. Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y.M., Hao, P.J., Wang, T. et al. Mathematical model for vertical rolling deformation based on energy method. Int J Adv Manuf Technol 107, 875–883 (2020). https://doi.org/10.1007/s00170-020-05094-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05094-3

Keywords

Navigation