Skip to main content
Log in

Feasibility analysis of active chatter control for stationary and revolving bar boring operations based on magnitude of control forces using fractional order PDλ controller

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Due to the factors of limited rigidity and small inherent damping of boring bars, very small depths of cutting can be applied for chatter free machining. Stability lobe diagrams can truly represent that limit. Boring operations are categorized based on the relative motion between the boring bar and workpiece. Modelling of each category is presented in detail using a 3-DOF model. The dynamics of such systems can be successfully represented using ordinary delay differential equations and time periodic delay differential equations. The open loop stability of each type of boring operation is numerically investigated. It has been observed that the stable depth of cut is much more for revolving bar (RB) as compared to stationary bar (SB) boring process. Active chatter control (ACC) techniques can enhance the material removal rates and surface finish of the workpiece. The feasibility of active chatter control for each category is investigated in detail. It is further observed that RB boring process is not a suitable candidate for ACC because much higher harmonic control forces are required for minor improvement in critical depth of cut.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Klein RG, Nachtigal CL (1975) A theoretical basis for the active control of a boring Bar operation. J Dyn Syst Meas Control 97(2):172–178. https://doi.org/10.1115/1.3426898

    Article  Google Scholar 

  2. Rao BC, Shin YC (1999) A comprehensive dynamic cutting force model for chatter prediction in turning. Int J Mach Tools Manuf 39(10):1631–1654. https://doi.org/10.1016/S0890-6955(99)00007-3

    Article  Google Scholar 

  3. Eynian M, Altintas Y (2009) Chatter stability of general turning operations with process damping. J Manuf Sci Eng 131(4):041005–041010. https://doi.org/10.1115/1.3159047

    Article  Google Scholar 

  4. Tanaka H, Obata F, Matsubara T, Mizumoto H (1994) Active chatter suppression of slender boring Bar using piezoelectric actuators. JSME Int J Ser C Dyn Control Robot Des Manuf 37(3):601–606. https://doi.org/10.1299/jsmec1993.37.601

    Article  Google Scholar 

  5. Redmond MJ, Barney P (1997) Development of an active boring bar for increased chatter immunity:3044. https://doi.org/10.2172/563816

  6. Wang M, Fei R (2001) On-line chatter detection and control in boring based on an electrorheological fluid. Mechatronics 11(7):779–792. https://doi.org/10.1016/S0957-4158(00)00044-1

    Article  Google Scholar 

  7. Pratt J, Nayfeh A (2001) Chatter control and stability analysis of a cantilever boring bar under regenerative cutting conditions:359. https://doi.org/10.1098/rsta.2000.0754

    Article  Google Scholar 

  8. Andrén L, Häkansson L, Claesson I (2003) Active control of machine tool vibrations in external turning operations. Proc Inst Mech Eng B J Eng Manuf 217(6):869–872. https://doi.org/10.1243/09544050360673251

    Article  Google Scholar 

  9. Chen F, Lu X, Altintas Y (2014) A novel magnetic actuator design for active damping of machining tools. Int J Mach Tools Manuf 85:58–69. https://doi.org/10.1016/j.ijmachtools.2014.05.004

    Article  Google Scholar 

  10. Mei D, Kong T, Shih AJ, Chen Z (2009) Magnetorheological fluid-controlled boring bar for chatter suppression. J Mater Process Technol 209(4):1861–1870. https://doi.org/10.1016/j.jmatprotec.2008.04.037

    Article  Google Scholar 

  11. Ganguli A, Deraemaeker A, Preumont A (2007) Regenerative chatter reduction by active damping control. J Sound Vib 300(3):847–862. https://doi.org/10.1016/j.jsv.2006.09.005

    Article  Google Scholar 

  12. Ganguli A, Deraemaeker A, Horodinca M, Preumont A (2005) Active damping of chatter in machine tools - demonstration with a ‘hardware-in-the-loop’ simulator. Proc Inst Mech Eng I J Syst Control Eng 219(5):359–369. https://doi.org/10.1243/095965105X33455

    Article  Google Scholar 

  13. Tewani SG, Rouch KE, Walcott BL (1995) A study of cutting process stability of a boring bar with active dynamic absorber. Int J Mach Tools Manuf 35(1):91–108. https://doi.org/10.1016/0890-6955(95)80009-3

    Article  Google Scholar 

  14. Shiraishi M, Yamanaka K, Fujita H (1991) Optimal control of chatter in turning. Int J Mach Tools Manuf 31(1):31–43. https://doi.org/10.1016/0890-6955(91)90049-9

    Article  Google Scholar 

  15. Mei C, Cherng JG, Wang Y (2005) Active control of regenerative chatter during metal cutting process. J Manuf Sci Eng 128(1):346–349. https://doi.org/10.1115/1.2124991

    Article  Google Scholar 

  16. Chen Z, Zhang H-T, Zhang X, Ding H (2013) Adaptive active chatter control in milling processes. J Dyn Syst Meas Control 136(2):021007. https://doi.org/10.1115/1.4025694

    Article  Google Scholar 

  17. Monnin J, Kuster F, Wegener K (2014) Optimal control for chatter mitigation in milling—part 1: modeling and control design. Control Eng Pract 24:156–166. https://doi.org/10.1016/j.conengprac.2013.11.010

    Article  Google Scholar 

  18. Monnin J, Kuster F, Wegener K (2014) Optimal control for chatter mitigation in milling—part 2: experimental validation. Control Eng Pract 24:167–175. https://doi.org/10.1016/j.conengprac.2013.11.011

    Article  Google Scholar 

  19. Dijk NJMV, Wouw NVD, Doppenberg EJJ, Oosterling HAJ, Nijmeijer H (2012) Robust active chatter control in the high-speed milling process. IEEE Trans Control Syst Technol 20(4):901–917. https://doi.org/10.1109/TCST.2011.2157160

    Article  Google Scholar 

  20. Ma H, Wu J, Yang L, Xiong Z (2017) Active chatter suppression with displacement-only measurement in turning process. J Sound Vib 401:255–267. https://doi.org/10.1016/j.jsv.2017.05.009

    Article  Google Scholar 

  21. Biju CV, Shunmugam MS (2019) Performance of magnetorheological fluid based tunable frequency boring bar in chatter control. Measurement 140:407–415. https://doi.org/10.1016/j.measurement.2019.03.073

    Article  Google Scholar 

  22. Tang B, Akbari H, Pouya M, Pashaki PV (2019) Application of piezoelectric patches for chatter suppression in machining processes. Measurement 138:225–231. https://doi.org/10.1016/j.measurement.2019.02.003

    Article  Google Scholar 

  23. Fallah M, Moetakef-Imani B, Hosseini A, Ebrahimi M (2019) Boring Bar chatter control using feedback filtered-x normalized least mean square algorithm. IFAC-PapersOnLine 52(10):358–363. https://doi.org/10.1016/j.ifacol.2019.10.057

    Article  Google Scholar 

  24. Liu Y, Liu Z, Song Q, Wang B (2019) Analysis and implementation of chatter frequency dependent constrained layer damping tool holder for stability improvement in turning process. J Mater Process Technol 266:687–695. https://doi.org/10.1016/j.jmatprotec.2018.11.033

    Article  Google Scholar 

  25. Ding Y, Zhu L, Zhang X, Ding H (2010) A full-discretization method for prediction of milling stability. Int J Mach Tools Manuf 50(5):502–509. https://doi.org/10.1016/j.ijmachtools.2010.01.003

    Article  Google Scholar 

  26. Insperger T, Stépán G (2004) Updated semi-discretization method for periodic delay-differential equations with discrete delay. Int J Numer Methods Eng 61(1):117–141. https://doi.org/10.1002/nme.1061

    Article  MathSciNet  MATH  Google Scholar 

  27. Breda D, Maset S, Vermiglio R Stability of linear delay differential equations a numerical approach with MATLAB. Springer Verlag

  28. Breda D, Maset S, Vermiglio R (2014) Pseudospectral methods for stability analysis of delayed dynamical systems. Int J Dyn Control 2(2):143–153. https://doi.org/10.1007/s40435-013-0041-x

    Article  Google Scholar 

  29. Breda D, Maset S, Vermiglio R (2012) Approximation of eigenvalues of evolution operators for linear retarded functional differential equations:50. https://doi.org/10.2307/41582952

  30. Gu DW, Petkov PH, Konstantinov MM (2005) Robust control design with MATLAB. Springer, London

    MATH  Google Scholar 

Download references

Funding

This research has been supported by UMGF Graduate Fellowship from University of Manitoba and Discovery Grant (No. RGPIN-2015-04173) of the Natural Sciences and Engineering Research Council (NSERC) of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajiv Kumar Vashisht.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vashisht, R.K., Peng, Q. Feasibility analysis of active chatter control for stationary and revolving bar boring operations based on magnitude of control forces using fractional order PDλ controller. Int J Adv Manuf Technol 106, 3957–3974 (2020). https://doi.org/10.1007/s00170-019-04881-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04881-x

Keywords

Navigation