Skip to main content
Log in

Generation of microcones on reaction-bonded silicon carbide by nanosecond pulsed laser irradiation

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Silicon carbide (SiC) is heavily used in the industry due to its resistance to chemical wear and excellent mechanical properties such as high hardness and high stiffness. However, these properties make it difficult to produce micro and nanostructures on the surface of SiC by conventional methods. In this study, high-density microcones that protrude ~ 10 μm above the initial surface have been fabricated by nanosecond pulsed Nd:YAG laser irradiation (λ = 532 nm) on reaction-bonded SiC. Geometrically aligned cones were also fabricated by modifying the laser scanning path, and effect of different parameters such as pulse frequency, laser fluence was studied. It was observed that the surface morphology of microcones was affected by the pulse width and beam overlap. X-ray spectroscopy and Raman spectroscopy showed that the microcones were mainly composed of silicon. Formation of these cone structures made the surface highly superhydrophilic with a contact angle of ~ 0°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Suyama S, Itoh Y, Tsuno K, Ohno K (2005) Φ 650 mm optical space mirror substrate of high-strength reaction-sintered silicon carbide. Proc. SPIE:5868. https://doi.org/10.1117/12.616043

  2. Toulemont Y, Breysse J, Piepot D, Miura S (2004) The 3.5 m all SiC telescope for SPICA. SPIE 5487:1001–1012. https://doi.org/10.1117/12.551405

    Article  Google Scholar 

  3. Xing Y, Deng J, Wu Z, Wu F (2017) High friction and low wear properties of laser-textured ceramic surface under dry friction. Opt Laser Technol 93:24–32. https://doi.org/10.1016/j.optlastec.2017.01.032

    Article  Google Scholar 

  4. Murzin SP, Balyakin VB (2017) Microstructuring the surface of silicon carbide ceramic by laser action for reducing friction losses in rolling bearings. Opt Laser Technol 88:96–98. https://doi.org/10.1016/j.optlastec.2016.09.007

    Article  Google Scholar 

  5. Geiger M, Roth S, Becker W (1998) Influence of laser-produced microstructures on the tribological behaviour of ceramics. Surf Coatings Technol 100–101:17–22. https://doi.org/10.1016/S0257-8972(97)00581-1

    Article  Google Scholar 

  6. Kondrashov V, Rühe J (2014) Microcones and nanograss: toward mechanically robust superhydrophobic surfaces. Langmuir 30:4342–4350. https://doi.org/10.1021/la500395e

    Article  Google Scholar 

  7. Li XM, Reinhoudt D, Crego-Calama M (2007) What do we need for a superhydrophobic surface? a review on the recent progress in the preparation of superhydrophobic surfaces. Chem. Soc. Rev. 36:1350–1368

    Article  Google Scholar 

  8. Younkin R, Carey JE, Mazur E, Levinson JA, Friend CM (2003) Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses. J Appl Phys 93:2626–2629. https://doi.org/10.1063/1.1545159

    Article  Google Scholar 

  9. Crouch CH, Carey JE, Warrender JM, Aziz MJ, Mazur E (2004) Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon. Appl Phys Lett 84:1850–1852. https://doi.org/10.1063/1.1667004

    Article  Google Scholar 

  10. Bäuerle D (2000) Laser Processing and Chemistry. Springer, Berlin

    Book  Google Scholar 

  11. Brown MS, Arnold CB (2010) Fundamentals of laser-material interaction and application to multiscale surface modification. In: Sugioka K, Meunier M, Piqué A (eds) Laser Precision Microfabrication. Springer Series in Materials Science, vol 135. Springer, Berlin, Heidelberg, pp 91–120

    Chapter  Google Scholar 

  12. Ness JN, Page TF (1986) Microstructural evolution in reaction-bonded silicon carbide. J Mater Sci 21:1377–1397. https://doi.org/10.1007/BF00553278

    Article  Google Scholar 

  13. Humphreys RG, Signals R, Establishment R et al (1981) ReceDed 22. Energy 39:163–167

    Google Scholar 

  14. Philipp HR, Taft EA (1960) Silicon carbide – a high temperature semiconductor. In: O'Connor JR, Smiltens J (eds) . Pergamon Press, Oxford, London, New York, Paris, p 366

    Google Scholar 

  15. Groth R, Kauer E (1961) Absorption freier Ladungsträger in CdS. Phys Status Solidi 1:650–655. https://doi.org/10.1002/pssb.19610010609

    Article  Google Scholar 

  16. Watanabe N, Kimoto T, Suda J (2014) Temperature dependence of optical absorption coefficient of 4H- and 6H-SiC from room temperature to 300 °C. Jpn J Appl Phys 53:12–15. https://doi.org/10.7567/JJAP.53.108003

    Article  Google Scholar 

  17. Choyke WJ, Patrick L (1960) Silicon carbide – a high temperature semiconductor. In: O'Connor JR, Smiltens J (eds) . Pergamon Press, Oxford, London, New York, Paris, p 306

    Google Scholar 

  18. Yu G, Levinshtein ME, Rumyantsev SL (2001) Properties of Advanced SemiconductorMaterials GaN, AlN, SiC, BN, SiC, SiGe . Eds. Levinshtein M.E., Rumyantsev S.L., Shur M.S., John Wiley & Sons, Inc., New York. pp 93-148.

  19. Duc DH, Naoki I, Kazuyoshi F (2013) A study of near-infrared nanosecond laser ablation of silicon carbide. Int J Heat Mass Transf 65:713–718. https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.050

    Article  Google Scholar 

  20. Samant AN, Daniel C, Chand RH, Blue CA, Dahotre NB (2009) Computational approach to photonic drilling of silicon carbide. Int J Adv Manuf Technol 45:704–713. https://doi.org/10.1007/s00170-009-2004-0

    Article  Google Scholar 

  21. Fedorenko L, Medvid’ A, Yusupov M, Yukhimchuck V, Krylyuk S, Evtukh A (2008) Nanostructures on SiC surface created by laser microablation. Appl Surf Sci 254:2031–2036. https://doi.org/10.1016/j.apsusc.2007.08.048

    Article  Google Scholar 

  22. Cappelli E, Orlando S, Mattei G, Montozzi M, Pinzari F, Sciti D (1999) Surface modifications of carbide ceramics induced by pulsed laser treatments. Appl Phys A Mater Sci Process 69:515–519. https://doi.org/10.1007/s003399900329

    Article  Google Scholar 

  23. Shigematsu I, Kanayama K, Tsuge A, Nakamura M (1998) Analysis of constituents generated with laser machining of Si3N4and SiC. J Mater Sci Lett 17:737–739. https://doi.org/10.1023/A:1006606810476

    Article  Google Scholar 

  24. Bai Y, Li L, Xue D, Zhang X (2016) Rapid fabrication of a silicon modification layer on silicon carbide substrate. Appl Opt 55:5814. https://doi.org/10.1364/ao.55.005814

    Article  Google Scholar 

  25. Dutto C, Fogarassy E, Mathiot D (2001) Numerical and experimental analysis of pulsed excimer laser processing of silicon carbide. Appl Surf Sci 184:362–366. https://doi.org/10.1016/S0169-4332(01)00518-9

    Article  Google Scholar 

  26. Chen SC, Cahill DG, Grigoropoulos CP (2002) Melting and surface deformation in pulsed laser surface micromodification of Ni-P Disks. J Heat Transfer 122:107. https://doi.org/10.1115/1.521441

    Article  Google Scholar 

  27. György E, Mihailescu IN, Serra P, P´erez del pino A, Morenza JL (2002) Crown-like structure development on titanium exposed to multipulse Nd:YAG laser irradiation. Appl Phys A Mater Sci Process. https://doi.org/10.1007/s003390201307, 74, 755, 759

  28. Taylor LL, Qiao J, Qiao J (2016) Optimization of femtosecond laser processing of silicon via numerical modeling. Opt. Mater. Express 6:2745–2758. https://doi.org/10.1364/OME.6.002745

    Article  Google Scholar 

  29. Bradby JE, Williams JS, Wong-Leung J, Swain MV, Munroe P (2002) Nanoindentation-induced deformation of Ge. Appl Phys Lett 80:2651–2653. https://doi.org/10.1063/1.1469660

    Article  Google Scholar 

  30. Koch K, Barthlott W (2009) Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials. Philos Trans R Soc A Math Phys Eng Sci 367:1487–1509. https://doi.org/10.1098/rsta.2009.0022

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiwang Yan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meshram, T., Yan, J. Generation of microcones on reaction-bonded silicon carbide by nanosecond pulsed laser irradiation. Int J Adv Manuf Technol 108, 1039–1048 (2020). https://doi.org/10.1007/s00170-019-04672-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04672-4

Keywords

Navigation