Skip to main content
Log in

Robust design of processes and products using the mathematics of the stochastic frontier (SF)

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The paper discusses a generic procedure for the parameter design of product and process development using planned and non-planned experiments. The method can predict the system sensitivity (robustness) against the stochastic stressful noises (e.g., unit-to-unit, stochastic chocks, environmental variation) and the non-natural sources of variation explaining the inability of the developed product/process to achieve its optimal functionality, beyond the pure random disturbances. The intrinsic and the extrinsic insensitivity components are isolated and evaluated using the stochastic frontier production methodology. The Cobb-Douglas and the TransLog, two accepted functional forms for the stochastic frontier model, are used to check the sample data adequacy and predictability. Hypothesis tests regarding the magnitude and the direction of the intrinsic and the extrinsic robustness components, the distributional form of the extrinsic insensitivity, and the estimation of the stochastic frontier parameters are performed using the maximum likelihood estimator. Finally, for the sake of completeness and applicability, the method has been demonstrated using three industrial case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CD:

Cobb-Douglas

CRS:

Constant Return to Scale

DFSS:

Design for Six Sigma

DMU:

Decision Making Unit

DRS:

Decreasing Return to Scale

ENI:

Extrinsic Noise Insensitivity

INI:

Intrinsic Noise Insensitivity

IRS:

Increasing Return to Scale

LR-statistic:

Log Ratio-statistic

LTB:

the ‘Larger is The Better’

ML:

Maximum Likelihood

NTB:

the ‘Nominal is The Better’

OLS:

Ordinary Least Square

PCH:

Performance CHaracteristic

SF:

Stochastic Frontier

S/N:

Signal to Noise ratio

STB:

the ‘Smaller is The Better

STI:

System Total Insensitivity

TE:

Technical inEfficiency

TL:

TransLog

VRS:

Varying Return to Scale

References

  1. Kwaka YH, Anbari FT (2006) Benefits, obstacles, and future of six sigma approach. Technovation 26:708–715. https://doi.org/10.1016/j.technovation.2004.10.003

    Article  Google Scholar 

  2. Pyzdek T, Keller PA (2010) “The six sigma handbook”, a complete guide for green belts, black belts, and managers at all levels, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  3. Lee MC, Chang T (2010) Developing a lean design for Six Sigma through supply chain methodology. Int J Prod Qual Manag 6(4):407–434. https://doi.org/10.1504/IJPQM.2010.035891

    Article  Google Scholar 

  4. Ferryanto L (2007) Design for six sigma. Jurnal Teknik Industri 9(1):1–14

    MATH  Google Scholar 

  5. Maghsoodloo S, Ozdemir G, Jordan V, Huang CH (2004) Strengths and limitations of Taguchi’s contributions to quality, manufacturing, and process engineering. J Manuf Syst 23(2):73–126. https://doi.org/10.1016/S0278-6125(05)00004-X

    Article  Google Scholar 

  6. Creveling CM (1997) Tolerance design: a handbook for developing optimal specifications. Addison-Wesley, Reading

    Google Scholar 

  7. Unal R, Dean EB (1991) Taguchi approach to design optimization for quality and cost: an overview. Annual Conference of the International Society of Parametric Analysts

  8. Nair VN, Abraham B, MacKay J, Box G, Kacker RN, Lorenzen TJ, Lucas JM, Myers RH, Vining GG, Nelder JA, Phadke MS, Sacks J, Welch WJ, Shoemaker AC, Tsui KL, Taguchi S, Wu CFJ (1992) Taguchi’s parameter design: a panel discussion. Technometrics 34(2):127–161. https://doi.org/10.1080/00401706.1992.10484904

    Article  MathSciNet  Google Scholar 

  9. Tsui KL (1992) An overview of Taguchi method and newly developed statistical methods for robust design. IIE Trans 24(5):44–57. https://doi.org/10.1080/07408179208964244

    Article  Google Scholar 

  10. Karna SK, Sahai R (2012) An overview on Taguchi method. Int J Eng Math Sci 1(1):1–7

    Google Scholar 

  11. Ghani JA, Jamaluddin H, Ab. Rahman MN, Deros BM (2013) Philosophy of Taguchi approach and method in design of experiment. Asian J Sci Res 6(1):27–37. https://doi.org/10.3923/ajsr.2013.27.37

    Article  Google Scholar 

  12. Brenneman WA, Myers WR (2003) Robust parameter design with categorical noise variables. J Qual Technol 35(4):335–341. https://doi.org/10.1080/00224065.2003.11980231

    Article  Google Scholar 

  13. Clemson B, Tang Y, Pyne J, Unal R (1995) Efficient methods for sensitivity analysis. Syst Dyn Rev 11(1):31–49

    Article  Google Scholar 

  14. Terninko J, Zusman A, Zlotin B (1998) Systematic innovation, introduction to TRIZ (Theory of Inventive Problem Solving). CRC Press, Taylor & Francis Group Edition

  15. Salamatov Y (1999) The right solution at the right time: a guide to innovative problem solving. Sample Chapter. Published by Insytec B.V, The Netherlands

    Google Scholar 

  16. Pugh S (1987) Design decision- how to succeed and know why. Concept Selection (Accession no. X8700381) Design Institute, Xerox Corporation.

  17. Dieter GE, Schmidt LC (2009) Engineering design, 4th edn. McGraw-Hill, New York

    Google Scholar 

  18. Mill H (1994) Enhanced quality functional deployment. World Class Des Manuf 1(3):23–26. https://doi.org/10.1108/09642369210056610

    Article  Google Scholar 

  19. Witter J, Clausing D, Laufenberg L, De Andrade RS (1995) Reusability – the key to corporate agility: its integration with enhanced quality function deployment. World Class Des Manuf 2(1):25–33. https://doi.org/10.1108/09642369310077742

    Article  Google Scholar 

  20. Fowlkes WY, Creveling CM (1995) Engineering methods for robust product design: using Taguchi methods in technology and product development. Addison-Wesley, Reading

    Google Scholar 

  21. Griffin A, Hauser JR (1993) The voice of the customer. Market Sci 12(1):1–27. https://doi.org/10.1287/mksc.12.1.1

    Article  Google Scholar 

  22. Smith JS (2003) Survey on the use of simulation for manufacturing system design and operation. J Manuf Syst 22(2):157–171. https://doi.org/10.1016/S0278-6125(03)90013-6

    Article  Google Scholar 

  23. De Werra D (1987) Design and operation of flexible manufacturing systems: the kingdom of heuristic methods. RAIRO Recherche Opérationnelle 21(4):365–382

    MathSciNet  Google Scholar 

  24. Negahban A, Smith JS (2014) Simulation for manufacturing system design and operation: literature review and analysis. J Manuf Syst 33:241–261. https://doi.org/10.1016/j.jmsy.2013.12.007

    Article  Google Scholar 

  25. Luo L, Kannan PK, Besharati B, Azarm S (2005) Design of robust new products under variability: marketing meets design. J Prod Innov Manag 22(2):177–192. https://doi.org/10.1111/j.0737-6782.2005.00113.x

    Article  Google Scholar 

  26. Kromrey JD, Hines CV (1996) Estimating the coefficient of cross-validity in multiple regression: a comparison of analytical and empirical methods. J Exp Educ 64(3):240–266. https://doi.org/10.1080/00220973.1996.9943806

    Article  Google Scholar 

  27. Yin P, Fan X (2001) Estimating R2 shrinkage in multiple regression: a comparison of different analytical methods. J Exp Educ 69(2):203–224 http://www.jstor.org/stable/20152659

    Article  Google Scholar 

  28. Box GEP, Fung CA (1986) Studies in quality improvement: minimizing transmitted variation by parameter design. CQPI Reports (Report no. 8)

  29. Bisgaard S (1992) A comparative analysis of the performance of Taguchi’s linear graphs. CQPI Reports (Report no. 82)

  30. Montgomery DC (1997) Design and analysis of experiments, 4th edn. Wiley, New York

    MATH  Google Scholar 

  31. Lewis SM, Dean AM (2011) Detection of interactions in experiments on large numbers of factors. J R Stat Soc Ser B 63(4):633–672 https://www.jstor.org/stable/2680658

    Article  MathSciNet  Google Scholar 

  32. Li X, Sudarsanam N, Frey DD (2006) Regularities in data from factorial experiments. Wiley Period Inc Complex 11(5):32–45. https://doi.org/10.1002/cplx.20123

    Article  Google Scholar 

  33. Tanco M, Viles E, Pozueta L (2008) Are all designs of experiments approaches suitable for your company? Proceedings of the World Congress on Engineering Vol II, WCE2008, London, UK, July 2-4

  34. Frey DD, Jugulum R (2006) The mechanisms by which adaptive one-factor-at-a-time experimentation leads to improvement. ASME J Mech Des 128:1050–1060. https://doi.org/10.1115/1.2216733

    Article  Google Scholar 

  35. Kacker RN, Lagergren ES, Filliben JJ (1991) Taguchi’s orthogonal arrays are classical designs of experiments. J Res Natl Inst Stand Technol 96(5):577–591. https://doi.org/10.6028/jres.096.034

    Article  Google Scholar 

  36. Xu H, Cheng SW, Wu SFJ (2004) Optimal projective three-level designs for factor screening and interaction detection. Technometrics 46(3):280–292 http://www.jstor.org/stable/25470843

    Article  MathSciNet  Google Scholar 

  37. Leon RV, Shoemaker AC, Kacker RN (1987) Performance measures independent of adjustment: an explanation and extension of Taguchi’s signal-to-noise ratios. Technometrics 29(3):253–265. https://doi.org/10.1080/00401706.1987.10488231

    Article  MathSciNet  MATH  Google Scholar 

  38. Box GEP (1988) Signal-to-noise ratios, performance criteria, and transformations. Technometrics 30(1):1–40. https://doi.org/10.1080/00401706.1988.10488313

    Article  MathSciNet  MATH  Google Scholar 

  39. Nishimizu M, Page JM (1982) Total factor productivity growth, technological progress and technical efficiency change: dimensions of productivity change in Yugoslavia 1965-78. Econ J 92(368):920–936. https://doi.org/10.2307/2232675

    Article  Google Scholar 

  40. Aigner DJ, Lovell CAK, Schmidt P (1977) Formulation and estimation of stochastic frontier production function models. J Econ 6:21–37. https://doi.org/10.1016/0304-4076(77)90052-5

    Article  MathSciNet  MATH  Google Scholar 

  41. Meeusen W, Van Den Broeck J (1977) Efficiency estimation from Cobb-Douglas production functions with composed error. Int Econ Rev 18(2):435–444 http://www.jstor.org/stable/2525757

    Article  Google Scholar 

  42. Schmidt P, Lovell CAK (1980) Estimating stochastic production and cost frontiers when technical and allocative inefficiency are correlated. J Econ 13:83–100. https://doi.org/10.1016/0304-4076(80)90044-5

    Article  MATH  Google Scholar 

  43. Coelli TJ, Rao DSP, O’Donnell CJ, Battese G (2005) An introduction to efficiency and productivity analysis, 2nd edn. Springer

  44. Farrell MJ (1957) The measurement of productive efficiency. J R Stat Soc Ser A 120(3):253–290 https://www.jstor.org/stable/2343100

    Article  Google Scholar 

  45. Gong BH, Sickles RC (1992) Finite sample evidence on the performance of stochastic frontiers and data envelopment analysis using panel data. J Econ 51:259–284. https://doi.org/10.1016/0304-4076(92)90038-S

    Article  Google Scholar 

  46. Aigner DJ, Chu SF (1968) On estimating the industry production function. Am Econ Rev 58:826–839

    Google Scholar 

  47. Bravo-Ureta BE, Solis D, Moreira Lopez VH, Maripani JF, Thiam A, Rivas T (2007) Technical efficiency in farming: a meta-regression analysis. J Prod Anal 27:57–72. https://doi.org/10.1007/s11123-006-0025-3

    Article  Google Scholar 

  48. Cooper WW, Seiford LM, Tonne K (2007) Data envelopment analysis: a comprehensive text with models, applications, references and DEA-solver software, 2nd edn. Springer

  49. Timmer CP (1971) Using a probabilistic frontier function to measure technical efficiency. J Polit Econ 79(4):776–794 http://www.jstor.org/stable/1830828

    Article  Google Scholar 

  50. Afriat S (1972) Efficiency estimation of production functions. Int Econ Rev 13:568–598. https://doi.org/10.2307/2525845

    Article  MathSciNet  MATH  Google Scholar 

  51. Chakraborty K, Biswas B, Lewis WC (1999) Technical efficiency in stochastic production frontier: a simultaneous equation approach. Economic Research Institute Study Papers (Paper 160) 10:1-33. https://digitalcommons.usu.edu/eri/160

  52. Battese GE, Coelli TJ (1988) Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data. J Econ 38:387–399. https://doi.org/10.1016/0304-4076(88)90053-X

    Article  MathSciNet  Google Scholar 

  53. Battese GE, Coelli TJ (1992) Frontier production function, technical efficiency and panel data: with application to paddy farmers in India. J Prod Anal 3:153–169

    Article  Google Scholar 

  54. Battese GE, Coelli TJ (1995) A model of technical inefficiency effects in a stochastic frontier production function for panel data. Empir Econ 20:325–332

    Article  Google Scholar 

  55. Kumbhakar SC, Lovell CAK (2000) Stochastic frontier analysis. Cambridge University Press, New York. https://doi.org/10.1017/CBO9781139174411

    Book  MATH  Google Scholar 

  56. Coelli T (1995) Estimators and Hypothesis tests for a stochastic frontier function: a Monte Carlo analysis. J Prod Anal 6(3):247–268. https://doi.org/10.1007/BF01076978

    Article  Google Scholar 

  57. Cornwell C, Schmidt P (1996) Production frontiers and efficiency measurement. In: Matyas L, Sevestre P (eds) The econometrics of panel data. Advanced studies in theoretical and applied econometrics, vol 33. Springer, pp 845–878, Dordrecht. https://doi.org/10.1007/978-94-009-0137-7_33

    Google Scholar 

  58. Greene WH (1980) On the estimation of a flexible Frontier Production model. J Econ 13:101–115. https://doi.org/10.1016/0304-4076(80)90045-7

    Article  MATH  Google Scholar 

  59. Koop G (2001) Cross-sectoral patterns of efficiency and technological change in manufacturing. Int Econ Rev 42(1):73–103. https://doi.org/10.1111/1468-2354.00101

    Article  Google Scholar 

  60. Battese GE, Cora GS (1977) Estimation of a production frontier model: with application to pastoral zone of Eastern Australia. Aust J Agric Econ 21(3):167–179. https://doi.org/10.1111/j.1467-8489.1977.tb00204.x

    Article  Google Scholar 

  61. Mistree F, Lautenschlager U, Erikstad SO, Allen JK (1993) Simulation reduction using the Taguchi method. NASA Contractor Report CR 93-4542

  62. Coelli T (1996) A guide to FRONTIER Version 4.1: a computer program for stochastic frontier production and cost function estimation. Centre for Efficiency and Productivity Analysis, University of New England, Armidale, Australia

  63. Montgomery DC (2005) Design and analysis of experiments, 6th edn. Wiley, New York

    MATH  Google Scholar 

  64. Subhashchandra PR, Behnam B (2006) Prediction of variation in dimensional tolerance due to sheet metal hydroforming using finite element analysis. SAE Trans (J Aerospace) 115(1):563–567 https://www.jstor.org/stable/44657712

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the IJAMPT editor and the anonymous reviewers for the contribution they made to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Trabelsi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trabelsi, A., Rezgui, M.A. Robust design of processes and products using the mathematics of the stochastic frontier (SF). Int J Adv Manuf Technol 106, 2829–2841 (2020). https://doi.org/10.1007/s00170-019-04503-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04503-6

Keywords

Navigation