Skip to main content

Fabrication and characterization of AA6061/CNTs surface nanocomposite by friction stir processing

Abstract

Aluminum matrix composites (AMCs) are among the advanced materials that are employed in numerous industrial applications. AMCs have good stiffness and strength. They have low weight that makes them valuably handy for improving fuel efficiency and economy in the structures made from them. The friction stir processing (FSP) is a novel technique which is highly advantageous for producing composites, which are reinforced with particles that are sub-micron in size particularly in light weight metal matrix composites (MMCs). Current study is done to examine the potential of AA6061-based surface nanocomposites by reinforcing it with carbon nanotubes (CNTs) (as-received and purified) employing FSP. Fabrication of the composites is carried out by filling CNTs into the grooves of different sizes and friction stir processed (FSPd). Various parameters are investigated to attain best mechanical properties and dispersion of CNTs in the matrix. Metallography is used to reveal the material flow and grain size variation in the zones formed by the FSP. Micro hardness and tensile tests are conducted to evaluate the mechanical properties and an increase of 47.3% hardness and an increase of 32.4% ultimate tensile strength (UTS) are observed from the base FSPd material. Electron microscopic techniques are also employed to reveal the microstructural details.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36

References

  1. Balakrishnan M, Dinaharan I, Palanivel R, Sathiskumar R (2019) Influence of friction stir processing on microstructure and tensile behavior of AA6061/Al3Zr cast aluminum matrix composites. J Manuf Process 38:148–157

    Article  Google Scholar 

  2. Thomas WM, Nicholas ED, Needham JC, Murch MG, Templesmith P, Dawes CJ (1991) G.B. Patent Application No. 9125978.8, U K

  3. Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R 50(1):1–78

    Article  Google Scholar 

  4. Mishra RS, Ma ZY, Charit I (2003) Friction stir processing: a novel technique for fabrication of surface composite. Mater Sci Eng A 341(1-2):307–310

    Article  Google Scholar 

  5. Ebbesen TW (1994) Carbon nanotubes. Annu Rev Mater Sci 24:235–264

    Article  Google Scholar 

  6. Kianezhad M, Honarbakhsh Raouf A (2019) Effect of nano-Al2O3 particles and friction stir processing on 5083 TIG welding properties. J Mater Process Technol 263:356–365

    Article  Google Scholar 

  7. Thostenson ET, Ren ZF, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912

    Article  Google Scholar 

  8. Thostenson ET, Li CY, Chou TW (2005) Nanocomposites in context. Compos Sci Technol 65(3-4):491–516

    Article  Google Scholar 

  9. Li C, Chou TW (2003) Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Compos Sci Technol 63(11):1517–1524

    Article  Google Scholar 

  10. Deng CF, Ma YX, Zhang P, Zhang XX, Wang DZ (2008) Thermal expansion behaviors of aluminum composite reinforced with carbon nanotubes. Mater Lett 62(15):2301–2303

    Article  Google Scholar 

  11. Esawi AMK, El Borady MA (2008) Carbon nanotubes-reinforced aluminum strips. Compos Sci Technol 68(2):486–492

    Article  Google Scholar 

  12. Morisada Y, Fujii H, Nagaoka T, Fukusumi M (2006) MWCNTs/AZ31 surface composites fabricated by friction stir processing. Mater Sci Eng A 419(1-2):344–348

    Article  Google Scholar 

  13. Ci L, Ryu Z, Jin-Phillipp NY, Ruhle M (2006) Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta Mater 54:5367–5375

    Article  Google Scholar 

  14. Zhang ZY, Yang R, Li Y, Chen G, Liu MP (2018) Microstructural evolution and mechanical properties of friction stir processed ZrB2/6061Al nanocomposites. J Alloys Compd 762(25):312–318

    Article  Google Scholar 

  15. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  16. Ogata S, Shibutani Y (2003) Ideal tensile strength and band gap of single walled carbon nanotubes. Phys Rev B 68:165409

    Article  Google Scholar 

  17. Ajayan PM, Schadler LS, Braun PV (2003) Nanocomposite science and technology. Wiley, Hoboken

    Book  Google Scholar 

  18. Bakshi SR, Lahiri D, Agarwal A (2010) Carbon nanotubes reinforced metal matrix composites - a review. Int Mater Rev 55:41–64

    Article  Google Scholar 

  19. Deng CF, Wang DZ, Zhang XX, Li AB (2007) Processing and properties of carbon nanotubes reinforced aluminum composites. Mater Sci Eng A 444(1-2):138–145

    Article  Google Scholar 

  20. Deng CF, Zhang X, Ma Y, Wang D (2007) Fabrication of aluminum matrix composite reinforced with carbon nanotubes. Rare Metals 26(5):450–455

    Article  Google Scholar 

  21. Deng CF, Zhang XX, Wang D, Lin Q, Li A (2007) Preparation and characterization of carbon nanotubes/aluminum matrix composites. Mater Lett 61(8-9):1725–1728

    Article  Google Scholar 

  22. Deng CF, Ma YX, Zhang P, Zhang XX, Wang DZ (2008) Thermal expansion behaviors of aluminum composites reinforced with carbon nanotubes. Mater Lett 62(15):2301–2303

    Article  Google Scholar 

  23. Mishra RS (2003) Friction stir processing technologies. Adv Mater Process 161(10):43–46

    Google Scholar 

  24. Shinoda T, Murakami H, Nanbu K, Takegami H (2004) Properties of frictionally coated layer on engine bore. Weld World 48(11-12):18–25

    Article  Google Scholar 

  25. Mishra RS, Mahoney MW (2004) Metal superplasticity enhancement and forming process Patent No. 6712916, US.

  26. Sharma SR, Ma ZY, Mishra RS (2004) Effect of friction stir processing on fatigue behavior of A356 alloy. Scr Mater 51(3):237–241

    Article  Google Scholar 

  27. Mishra RS (2003) Superplastic forming of micro components, Patent Specification 6,655,575, US

  28. Berbon PB, Bingel WH, Mishra RS, Bampton CC, Mahoney MW (2001) Friction stir processing: a tool to homogenize nanocomposite aluminum alloys. Scr Mater 44(1):61–66

    Article  Google Scholar 

  29. Mishra RS (2005) Integral channels in metal components and fabrication thereof Patent No. 6,923,362, US

  30. Mishra RS, Mahoney MW (2007) Friction stir welding and processing. ASM International, Metals Park

    Google Scholar 

  31. MA ZY (2008) Friction stir processing technology: a review. Metall Mater Trans A 39(3):642–658

    Article  Google Scholar 

  32. Khaled T (2005) An outsider looks at friction stir welding Federal Aviation Administration, Report ANM-112 N-05-06-FAA-USA

  33. Lim DK, Shibayanagib T, Gerlicha AP (2009) Synthesis of multi-walled CNTs reinforced aluminium alloy composite via friction stir processing. Mater Sci Eng A 507(1–2):194–199

    Article  Google Scholar 

  34. Johannes LB, Yowell L, Sosa E, Arepalli S, Mishra RS (2006) Survivability of single-walled carbon nanotubes during friction stir processing. Nanotechnology 17(12):3081–3084

    Article  Google Scholar 

  35. Miracle DB (2005) Metal matrix composite-from science to technological significance. Compos Sci Technol 65(15-16):2526–2540

    Article  Google Scholar 

  36. Shinoda T, Kawai M (2003) Surface modification by novel friction thermomechanical process of aluminum alloy castings. Surf Coat Technol 169-170:456–459

    Article  Google Scholar 

  37. Melgarejo ZH, Suárezb OM, Sridharanc K (2006) Wear resistance of a functionally graded aluminum matrix composite. Scr Mater 55(1):95–98

    Article  Google Scholar 

  38. Funatani K (2000) Emerging technology in surface modification of light metals. Surf Coat Technol 133-134:264–272

    Article  Google Scholar 

  39. Shorowordi KM, Laouib T, Haseeba AS, Celisb JP, Froyenb L (2003) Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composite: a comparative study. J Mater Process Technol 142(3):738–743

    Article  Google Scholar 

  40. Zhang J, Suna K, Wang J (2008) Sliding wear behavior of plasma sprayed Fe3Al–Al2O3 graded coatings. Thin Solid Films 516(16):5681–5685

    Article  Google Scholar 

  41. Zorawski W, Chatys R, Radek N (2008) Plasma-sprayed composite coatings with reduced friction coefficient. Surf Coat Technol 202(18):4578–4582

    Article  Google Scholar 

  42. Rosenberger MR, Schvezovb CE, Forlererc E (2005) Wear of different aluminum matrix composites under conditions that generate a mechanically mixed layer. Wear 259(1-6):590–601

    Article  Google Scholar 

  43. Liu ZY, Xiao BL, Wang WG, Ma ZY (2012) Singly dispersed carbon nanotube aluminum composites fabricated by powder metallurgy combined with friction stir processing. Carbon 50(5):1843–1852

    Article  Google Scholar 

  44. Morisada Y, Fujii H, Nagaokaa T, Fukusumia M (2006) Effect of friction stir processing with SiC particles on microstructure and hardness of AZ31. Mater Sci Eng A 433(1-2):50–54

    Article  Google Scholar 

  45. Misak HE (2008) The distribution and flow of nickel powder and CNTs mixed in an Al material via friction stir welding Graduating Thesis, Wichita State University

  46. Luick L (2009) FSP of SWNT to increase the thermal conductivity of aluminum. South Dakota School of Mines and Technology & NSF, South Dakota

    Google Scholar 

  47. Amin W (2012) MWCNTs/AA6061 Surface nanocomposites: development using friction stir processing and characterization FMSE, GIK Institute of Engineering Sciences and Technology Topi, KPK, Pakistan

  48. Timken Latrobe Steel Data Sheet: H13 Tool Steel (2007) http://www.timken.com

  49. International Mold Steel, Inc. Premium H13 (2007) http://www.moldsteel.com

  50. ASM International, ASM metals handbook (1990) Properties and selection: nonferrous alloys and special purpose materials American Society for Metals, vol 2. ASM International, Metals Park

    Google Scholar 

  51. Bryson B, Bryson WE (2005) Heat treatment, selection, and application of tool steels. Hanser Gardner Publications, Cincinnati

    MATH  Book  Google Scholar 

  52. Thelning KE (1984) Steel and its heat treatment Butterworths, London

  53. Midling OT, Oosterkamp LD, Bersaas J (1998) Friction stir welding aluminum-process and applications Joints in Aluminium – INALCO: Seventh International Conference Proceedings: (15-17 April 1998), Cambridge, UK, pp 161–169

  54. Hashimoto T, Jyogan S, Nakata K, Kiu YG, Ushio M (1999) FSW joints of high strength aluminum alloy Proc 1st International Symposium on Friction Stir Welding: (15-16 June 1999), Thousand Oaks, CA, USA

  55. Nakata K, Kim YG, Ushio M, Hashimoto T, Jyogan S (2000) Weldability of high strength aluminum alloys by friction stir welding. ISIJ Int 40(1):515–519

    Google Scholar 

  56. Dickerson T, Przydatek J (2000) The significance of root flaws in friction stir welds in aluminum alloys The Welding Institute, Members Report No.714/2000

  57. Feng AH, Xiao BL, Ma ZY (2008) Effect of microstructural evolution on mechanical properties of friction stir welded AA2009/SiCp composite. Compos Sci Technol 68(9):2141–2148

    Article  Google Scholar 

  58. Rohatgi P (1991) Cast aluminum-matrix composites for automotive applications. JOM J Miner Met Mater Soc 43(4):10–15

    Article  Google Scholar 

  59. Kelly A (2006) Composite materials after seventy years. J Mater Sci 41(3):905–912

    Article  Google Scholar 

  60. Rawal S (2001) Metal-matrix composites for space applications. JOM J Miner Met Mater Soc 53(4):14–17

    Article  Google Scholar 

  61. Shelly JS, LeClaire R, Nichols J (2001) Metal-matrix composites for liquid rocket engines. JOM J Miner Met Mater Soc 53(4):18–21

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tareq Mnazoor.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Riaz, H., Mnazoor, T. & Raza, A. Fabrication and characterization of AA6061/CNTs surface nanocomposite by friction stir processing. Int J Adv Manuf Technol 105, 749–769 (2019). https://doi.org/10.1007/s00170-019-04243-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04243-7

Keywords

  • Aluminum matrix composites
  • Friction stir
  • CNTs
  • Tensile
  • Microstructure