Skip to main content
Log in

Investigations on the microstructure and mechanical properties of laser welded dissimilar galvanized steel–aluminum joints

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this study, galvanized high-strength steel and aluminum alloy sheets were laser-welded in zero-gap lap joint configuration. In order to determine the influences of the heat input levels, microstructural and mechanical properties of the joints were investigated. The weld bead geometry, microstructure, and intermetallic phases at the interface of welded joints were investigated using an optical microscope and scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS) at different heat input levels. Mechanical properties and microhardness distribution of the welded joints were examined according to the weld bead dimension. The results revealed that there is a correlation between the weld seam geometry and intermetallic phase formation. At relatively high heat input level, the penetration depth increased, and thick Al-rich intermetallic layer was observed at the interface of the weld seam, which deteriorated the tensile strength of the joint. It has been found that without the need for any additional precaution, the thickness of the IMC layer can be limited to 5–15 μm when the optimum welding parameters were conducted. The experimental results showed that with limited heat input and penetration depths, up to 108.7-N/mm tensile strength could be achieved and fracture initiated at the weld seam–steel interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hirsch J (2014) Recent development in aluminium for automotive applications. Trans Nonferrous Met Soc China (English Ed) 24:1995–2002. https://doi.org/10.1016/S1003-6326(14)63305-7

    Article  Google Scholar 

  2. Gullino A, Matteis P, D’Aiuto F (2019) Review of aluminum-to-steel welding technologies for car-body applications. Metals (Basel) 9:315. https://doi.org/10.3390/met9030315

    Article  Google Scholar 

  3. Wang D, Wang H, Cui H, He G (2016) Enhancement of the laser welded AA6061-carbon steel joints by using Al5Si intermediate layer. J Mater Process Technol 237:277–285. https://doi.org/10.1016/j.jmatprotec.2016.06.017

    Article  Google Scholar 

  4. Wang P, Chen X, Pan Q, Madigan B, Long J (2016) Laser welding dissimilar materials of aluminum to steel: an overview. Int J Adv Manuf Technol 87:3081–3090. https://doi.org/10.1007/s00170-016-8725-y

    Article  Google Scholar 

  5. Springer H, Kostka A, Payton EJ, Raabe D, Kaysser-Pyzalla A, Eggeler G (2011) On the formation and growth of intermetallic phases during interdiffusion between low-carbon steel and aluminum alloys. Acta Mater 59:1586–1600. https://doi.org/10.1016/j.actamat.2010.11.023

    Article  Google Scholar 

  6. Kovacevic R, Atabaki MM, Chenier P et al (2014) Welding of aluminum alloys to steels: an overview. J Manuf Sci Prod 14. https://doi.org/10.1515/jmsp-2014-0007

  7. Meco S, Cozzolino L, Ganguly S, Williams S, McPherson N (2017) Laser welding of steel to aluminium: thermal modelling and joint strength analysis. J Mater Process Tech 247:121–133. https://doi.org/10.1016/j.jmatprotec.2017.04.002

    Article  Google Scholar 

  8. Ozaki H, Kutsuna M (2012) Dissimilar metal joining of zinc coated steel and aluminum alloy by laser roll welding. Weld Process Ch 2:35. https://doi.org/10.5772/2884

    Article  Google Scholar 

  9. Schimek M, Springer A, Kaierle S, Kracht D, Wesling V (2012) Laser-welded dissimilar steel-aluminum seams for automotive lightweight construction. Phys Procedia 39:43–50. https://doi.org/10.1016/j.phpro.2012.10.012

    Article  Google Scholar 

  10. Yang J, Li YL, Zhang H (2016) Microstructure and mechanical properties of pulsed laser welded Al/steel dissimilar joint. Trans Nonferrous Met Soc China (English Ed) 26:994–1002. https://doi.org/10.1016/S1003-6326(16)64196-1

    Article  Google Scholar 

  11. Yang J, Li YL, Zhang H, Guo W, Zhou Y (2015) Control of interfacial intermetallic compounds in Fe-Al joining by Zn addition. Mater Sci Eng A 645:323–327. https://doi.org/10.1016/j.msea.2015.08.036

    Article  Google Scholar 

  12. Meco S, Pardal G, Ganguly S, Miranda RM, Quintino L, Williams S (2013) Overlap conduction laser welding of aluminium to steel. Int J Adv Manuf Technol 67:647–654. https://doi.org/10.1007/s00170-012-4512-6

    Article  Google Scholar 

  13. Wang C, Cui L, Mi G, Jiang P, Shao X, Rong Y (2017) The influence of heat input on microstructure and mechanical properties for dissimilar welding of galvanized steel to 6061 aluminum alloy in a zero-gap lap joint configuration. J Alloys Compd 726:556–566. https://doi.org/10.1016/j.jallcom.2017.08.015

    Article  Google Scholar 

  14. Indhu R, Soundarapandian S, Vijayaraghavan L (2018) Yb : YAG laser welding of dual phase steel to aluminium alloy. J Mater Process Technol 262:411–421. https://doi.org/10.1016/j.jmatprotec.2018.05.022

    Article  Google Scholar 

  15. Fan J, Thomy C, Vollertsen F (2011) Effect of thermal cycle on the formation of intermetallic compounds in laser welding of aluminum-steel overlap joints. Phys Procedia 12:134–141. https://doi.org/10.1016/j.phpro.2011.03.017

    Article  Google Scholar 

  16. Yuce C, Karpat F, Yavuz N (2018) Influence of heat input on mechanical properties and microstructure of laser welded dissimilar galvanized steel-aluminum joints. In: ASME 2018 13th International Manufacturing Science and Engineering Conference, MSEC 2018. ASME, p V002T04A037

  17. Torkamany MJ, Tahamtan S, Sabbaghzadeh J (2010) Dissimilar welding of carbon steel to 5754 aluminum alloy by Nd:YAG pulsed laser. Mater Des 31:458–465. https://doi.org/10.1016/j.matdes.2009.05.046

    Article  Google Scholar 

  18. Evdokimov A, Obrosov A, Ossenbrink R, Weiß S, Michailov V (2018) Mechanical properties of dissimilar steel-aluminum welds. Mater Sci Eng A 722:242–254. https://doi.org/10.1016/j.msea.2018.03.019

    Article  Google Scholar 

  19. Ai Y, Shao X, Jiang P, Li P, Liu Y, Liu W (2016) Welded joints integrity analysis and optimization for fiber laser welding of dissimilar materials. Opt Lasers Eng 86:62–74. https://doi.org/10.1016/j.optlaseng.2016.05.011

    Article  Google Scholar 

  20. Sierra G, Peyre P, Deschaux-beaume F, et al (2007) Steel to aluminium key-hole laser welding. 447:197–208. https://doi.org/10.1016/j.msea.2006.10.106

    Article  Google Scholar 

  21. Kouadri-David A (2014) Study of metallurgic and mechanical properties of laser welded heterogeneous joints between DP600 galvanised steel and aluminium 6082. Mater Des 54:184–195. https://doi.org/10.1016/j.matdes.2013.07.093

    Article  Google Scholar 

  22. Cui L, Chen B, Chen L, He D (2018) Dual beam laser keyhole welding of steel/aluminum lapped joints. J Mater Process Technol 256:87–97. https://doi.org/10.1016/j.jmatprotec.2018.02.016

    Article  Google Scholar 

  23. Overmeyer L, Springer A, Meier O et al (2018) Investigations on laser welding of dissimilar joints of steel and aluminum using a high-power diode laser. J Laser Appl 30:032422. https://doi.org/10.2351/1.5040643

    Article  Google Scholar 

  24. Kaierle S, Overmeyer L, Lahdo R et al (2016) High-power laser welding of thick steel-aluminum dissimilar joints. Phys Proc 83:396–405. https://doi.org/10.1016/j.phpro.2016.08.041

    Article  Google Scholar 

  25. Seffer O, Pfeifer R, Springer A, Kaierle S (2016) Investigations on laser beam welding of different dissimilar joints of steel and aluminum alloys for automotive lightweight construction. Phys Procedia 83:383–395. https://doi.org/10.1016/j.phpro.2016.08.040

    Article  Google Scholar 

  26. Ezazi MA, Yusof F, Sarhan AAD, Shukor MHA, Fadzil M (2015) Employment of fiber laser technology to weld austenitic stainless steel 304l with aluminum alloy 5083 using pre-placed activating flux. Mater Des 87:105–123. https://doi.org/10.1016/j.matdes.2015.08.014

    Article  Google Scholar 

  27. Zhou D, Xu S, Zhang L, Peng Y, Liu J (2017) Microstructure, mechanical properties, and electronic simulations of steel/aluminum alloy joint during deep penetration laser welding. Int J Adv Manuf Technol 89:377–387. https://doi.org/10.1007/s00170-016-9114-2

    Article  Google Scholar 

  28. Long J, Huang W, Xiang J, Guan Q, Ma Z (2018) Parameter optimization of laser welding of steel to Al with pre-placed metal powders using the Taguchi-response surface method. Opt Laser Technol 108:97–106. https://doi.org/10.1016/j.optlastec.2018.06.026

    Article  Google Scholar 

  29. Chen S, Zhai Z, Huang J, Zhao X, Xiong J (2016) Interface microstructure and fracture behavior of single/dual-beam laser welded steel-Al dissimilar joint produced with copper interlayer. Int J Adv Manuf Technol 82:631–643. https://doi.org/10.1007/s00170-015-7390-x

    Article  Google Scholar 

  30. Kashani HT, Kah P, Martikainen J (2015) Laser overlap welding of zinc-coated steel on aluminum alloy. Phys Procedia 78:265–271. https://doi.org/10.1016/j.phpro.2015.11.037

    Article  Google Scholar 

  31. Jia L, Shichun J, Yan S, Cong N, junke C, Genzhe H (2015) Effects of zinc on the laser welding of an aluminum alloy and galvanized steel. J Mater Process Technol 224:49–59. https://doi.org/10.1016/j.jmatprotec.2015.04.017

    Article  Google Scholar 

  32. Chen HC, Pinkerton AJ, Li L, Liu Z, Mistry AT (2011) Gap-free fibre laser welding of Zn-coated steel on Al alloy for light-weight automotive applications. Mater Des 32:495–504. https://doi.org/10.1016/j.matdes.2010.08.034

    Article  Google Scholar 

  33. Ma J, Harooni M, Carlson B, Kovacevic R (2014) Dissimilar joining of galvanized high-strength steel to aluminum alloy in a zero-gap lap joint configuration by two-pass laser welding. Mater Des 58:390–401. https://doi.org/10.1016/j.matdes.2014.01.046

    Article  Google Scholar 

  34. Zhou D, Xu S, Peng L, Liu J (2016) Laser lap welding quality of steel/aluminum dissimilar metal joint and its electronic simulations. Int J Adv Manuf Technol 86:2231–2242. https://doi.org/10.1007/s00170-015-8254-0

    Article  Google Scholar 

  35. Evdokimov A, Springer K, Doynov N, Ossenbrink R, Michailov V (2017) Heat source model for laser beam welding of steel-aluminum lap joints. Int J Adv Manuf Technol 93:709–716. https://doi.org/10.1007/s00170-017-0569-6

    Article  Google Scholar 

  36. Guan Q, Long J, Yu P, Jiang S, Huang W, Zhou J (2019) Effect of steel to aluminum laser welding parameters on mechanical properties of weld beads. Opt Laser Technol 111:387–394. https://doi.org/10.1016/j.optlastec.2018.09.060

    Article  Google Scholar 

  37. Yan F, Fang X, Chen L, Wang C, Zhao J, Chai F, Wang W (2018) Microstructure evolution and phase transition at the interface of steel/Al dissimilar alloys during Nd: YAG laser welding. Opt Laser Technol 108:193–201. https://doi.org/10.1016/j.optlastec.2018.06.039

    Article  Google Scholar 

Download references

Funding

The authors acknowledge the Scientific and Technological Research Council of Turkey (TÜBITAK) for the support by BIDEB 2211-A National Scholarship Programme for supporting this research. And a part of this research was supported by the IPG Photonics Eurasia at Istanbul, Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celalettin Yuce.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuce, C., Karpat, F. & Yavuz, N. Investigations on the microstructure and mechanical properties of laser welded dissimilar galvanized steel–aluminum joints. Int J Adv Manuf Technol 104, 2693–2704 (2019). https://doi.org/10.1007/s00170-019-04154-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04154-7

Keywords

Navigation