Skip to main content

Advertisement

Log in

Study effects on diamond concentration of CuSnFeNi/diamond composite on grinding WC

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

There are still some challenges to use metal matrix composites reinforced with diamond particles in grinding field because it is difficult to find a suitable metal matrix to balance the mechanical properties and grinding performance. In order to solve this problem, CuSnFeSn/diamond composites were fabricated by introducing hybrid microwave sintering with diamond concentration ranging from 40 to 70%. The microstructure, physical and mechanical properties, and critical grinding performance were investigated. Best balance of mechanical properties and grinding surface roughness occurred when the diamond concentration is 60%. It holds a hardness of 98.5 ± 0.5HRB, a flexural strength of 266.98 ± 15.6 MPa, an elastic modulus 46.62 ± 8.48GPa, and WC sample surface roughness Ra14.92 ± 2.92 nm. The grinding experiment results reveal that there are three wear modes in the processing, which are adhesive wear, plastic deformation, and sliding friction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bastwros M, Kim G-Y, Zhu C, Zhang K, Wang S, Tang X, Wang X (2014) Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Compos Part B 60:111–118. https://doi.org/10.1016/j.compositesb.2013.12.043

    Article  Google Scholar 

  2. Wu SQ, Wang HZ, Tjong SC (1996) Mechanical and wear behavior of an Al/Si alloy metal-matrix composite reinforced with aluminosilicate fiber. Compos Sci Technol 56(11):1261–1270. https://doi.org/10.1016/S0266-3538(96)00085-1

    Article  Google Scholar 

  3. Tjong SC (2013) Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater Sci Eng R-Rep 74(10):281–350. https://doi.org/10.1016/j.mser.2013.08.001

    Article  Google Scholar 

  4. Miracle DB (2005) Metal matrix composites – from science to technological significance. Compos Sci Technol 65(15):2526–2540. https://doi.org/10.1016/j.compscitech.2005.05.027

    Article  Google Scholar 

  5. Bakshi SR, Agarwal A (2011) An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites. Carbon 49(2):533–544. https://doi.org/10.1016/j.carbon.2010.09.054

    Article  Google Scholar 

  6. Esawi AMK, Farag MM (2007) Carbon nanotube reinforced composites: potential and current challenges. Mater Design 28(9):2394–2401. https://doi.org/10.1016/j.matdes.2006.09.022

    Article  Google Scholar 

  7. Kamalizadeh S, Niknam SA, Asgari A, Balazinski M (2019) Tool wear characterization in high-speed milling of titanium metal matrix composites. Int J Adv Manuf Technol 100(9):2901–2913. https://doi.org/10.1007/s00170-018-2651-0

    Article  Google Scholar 

  8. Kwon H, Estili M, Takagi K, Miyazaki T, Kawasaki A (2009) Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon 47(3):570–577. https://doi.org/10.1016/j.carbon.2008.10.041

    Article  Google Scholar 

  9. Jiang L, Li Z, Fan G, Cao L, Zhang D (2012) The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution. Carbon 50(5):1993–1998. https://doi.org/10.1016/j.carbon.2011.12.057

    Article  Google Scholar 

  10. Matli P, Shakoor R, Amer Mohamed A, Gupta M (2016) Microwave rapid sintering of Al-metal matrix composites: a review on the effect of reinforcements, microstructure and mechanical properties. Metals 6(7):143

    Article  Google Scholar 

  11. Pérez-Bustamante R, Pérez-Bustamante F, Estrada-Guel I, Licea-Jiménez L, Miki-Yoshida M, Martínez-Sánchez R (2013) Effect of milling time and CNT concentration on hardness of CNT/Al2024 composites produced by mechanical alloying. Mater Charact 75:13–19. https://doi.org/10.1016/j.matchar.2012.09.005

    Article  Google Scholar 

  12. Xiao Y, Xu F, Dong B, Liu W, Hu X (2017) Discussion on the local magnetic force between reversely magnetized micro metal particles in the microwave sintering process. Metals 7(2):47

    Article  Google Scholar 

  13. Nicholls CJ, Boswell B, Davies IJ, Islam MN (2017) Review of machining metal matrix composites. Int J Adv Manuf Technol 90(9–12):2429–2441. https://doi.org/10.1007/s00170-016-9558-4

    Article  Google Scholar 

  14. Gul F, Acilar M (2004) Effect of the reinforcement volume fraction on the dry sliding wear behaviour of Al-10Si/SiCp composites produced by vacuum infiltration technique. Compos Sci Technol 64(13–14):1959–1970. https://doi.org/10.1016/j.compscitech.2004.02.013

    Article  Google Scholar 

  15. Anand K, Kishore (1983) On the wear of aluminium-corundum composites. Wear 85:163–169. https://doi.org/10.1016/0043-1648(83)90060-1

    Article  Google Scholar 

  16. Miranda G, Ferreira P, Buciumeanu M, Cabral A, Fredel M, Silva FS, Henriques B (2017) Microstructure, mechanical and wear behaviors of hot-pressed copper-nickel-based materials for diamond cutting tools. J Mater Eng Perform 26(8):4046–4055. https://doi.org/10.1007/s11665-017-2819-z

    Article  Google Scholar 

  17. Wang L, Guo S, Gao J, Yang L, Hu T, Peng J, Hou M, Jiang C (2017) Microwave sintering behavior of FeCuCo based metallic powder for diamond alloy tool bit. J Alloy Compd 727:94–99. https://doi.org/10.1016/j.jallcom.2017.08.132

    Article  Google Scholar 

  18. Zhang Q, Wu GH, Chen GQ, Jiang LT, Luan BF (2003) The thermal expansion and mechanical properties of high reinforcement content SiCp/Al composites fabricated by squeeze casting technology. Composites Part a-Applied Science and Manufacturing 34(11):1023–1027. https://doi.org/10.1016/s1359-835x(03)00253-7

    Article  Google Scholar 

  19. Wang ZW, Song M, Sun C, He YH (2011) Effects of particle size and distribution on the mechanical properties of SiC reinforced Al-cu alloy composites. Mater Scie Eng a-Struct Mater Prop Microstruct Process 528(3):1131–1137. https://doi.org/10.1016/j.msea.2010.11.028

    Article  Google Scholar 

  20. Karamis MB, Cerit AA, Selcuk B, Nair F (2012) The effects of different ceramics size and volume fraction on wear behavior of Al matrix composites (for automobile cam material). Wear 289:73–81. https://doi.org/10.1016/j.wear.2012.04.012

    Article  Google Scholar 

  21. Chen J, Bao C, Ma Y, Chen Z (2017) Distribution control of AlN particles in Mg-Al/AlN composites. J Alloy Compd 695:162–170. https://doi.org/10.1016/J.JALLCOM.2016.10.190

    Article  Google Scholar 

  22. Liu Y, Fang Y, Liu X, Wang X, Yang B (2017) Mussel-inspired modification of carbon fiber via polyethyleneimine/polydopamine co-deposition for the improved interfacial adhesion. Compos Sci Technol 151:164–173. https://doi.org/10.1016/J.COMPSCITECH.2017.08.008

    Article  Google Scholar 

  23. Nicholson ED, Baker TW, Redman SA, Kalaugher E, Rosser KN, Everitt NM, Ashfold MNR, Partridge PG (1996) Young’s modulus of diamond-coated fibres and wires. Diam Relat Mater 5:658–663. https://doi.org/10.1016/0925-9635(95)00361-4

    Article  Google Scholar 

  24. Medina-Esquivel RA, Vales-Pinzon C, Quiñones-Weiss G, Zambrano-Arjona MA, Mendez-Gamboa JA, Cab C, Alvarado-Gil JJ (2015) Thermal conductivity of a diamond magnetite composite fluid under the effect of a uniform magnetic field. Diam Relat Mater 53:45–51. https://doi.org/10.1016/J.DIAMOND.2015.01.008

    Article  Google Scholar 

  25. Maniere C, Zahrah T, Olevsky EA (2017) Inherent heating instability of direct microwave sintering process: sample analysis for porous 3Y-ZrO2. Scripta Mater 128:49–52. https://doi.org/10.1016/j.scriptamat.2016.10.008

    Article  Google Scholar 

  26. Roy R, Agrawal D, Jiping C, Gedevanishvili S (1999) Full sintering of powdered-metal bodies in a microwave field. Nature 399(6737):668–670. https://doi.org/10.1038/21390

    Article  Google Scholar 

  27. Zhang Y, Cheng Y, Hu HP, Yin ZB (2017) Experimental study on cutting performance of microwave sintered Ti(C, N)/Al2O3 cermet tool in the dry machining of hardened steel. Int J Adv Manuf Technol 91(9–12):3933–3941. https://doi.org/10.1007/s00170-017-0062-2

    Article  Google Scholar 

  28. Oghbaei M, Mirzaee O (2010) Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J Alloy Compd 494(1–2):175–189. https://doi.org/10.1016/j.jallcom.2010.01.068

    Article  Google Scholar 

  29. Shi J, Cheng Z, Gelin JC, Barriere T, Liu B (2017) Sintering of 17-4PH stainless steel powder assisted by microwave and the gradient of mechanical properties in the sintered body. Int J Adv Manuf Technol 91(5–8):2895–2906. https://doi.org/10.1007/s00170-016-9960-y

    Article  Google Scholar 

  30. Chandrakanth RG, Rajkumar K, Aravindan S (2010) Fabrication of copper-TiC-graphite hybrid metal matrix composites through microwave processing. Int J Adv Manuf Technol 48(5–8):645–653. https://doi.org/10.1007/s00170-009-2474-0

    Article  Google Scholar 

  31. Abedinzadeh R (2018) Study on the densification behavior of aluminum powders using microwave hot pressing process. Int J Adv Manuf Technol 97(5):1913–1929. https://doi.org/10.1007/s00170-018-1867-3

    Article  Google Scholar 

  32. Li Y, Cheng L, Zhou J (2018) Curing multidirectional carbon fiber reinforced polymer composites with indirect microwave heating. Int J Adv Manuf Technol 97(1):1137–1147. https://doi.org/10.1007/s00170-018-1974-1

    Article  Google Scholar 

  33. Fernandez CP, Zabotto FL, Garcia D, Kiminami RHGA (2016) In situ sol gel co-synthesis under controlled pH and microwave sintering of PZT/CoFe2O4 magnetoelectric composite ceramics. Ceram Int 42(2):3239–3249. https://doi.org/10.1016/j.ceramint.2015.10.115

    Article  Google Scholar 

  34. Khot SS, Shinde NS, Basavaiah N, Watawe SC, Vaidya MM (2015) Magnetic properties of LiZnCu ferrite synthesized by the microwave sintering method. J Magn Magn Mater 374:182–186. https://doi.org/10.1016/j.jmmm.2014.08.039

    Article  Google Scholar 

  35. Ertugrul O, Park HS, Onel K, Willert-Porada M (2014) Effect of particle size and heating rate in microwave sintering of 316L stainless steel. Powder Technol 253:703–709. https://doi.org/10.1016/j.powtec.2013.12.043

    Article  Google Scholar 

  36. Hassan MN, Mahmoud MM, Link G, Abd El-Fattah A, Kandil S (2016) Sintering of naturally derived hydroxyapatite using high frequency microwave processing. J Alloy Compd 682:107–114. https://doi.org/10.1016/j.jallcom.2016.04.266

    Article  Google Scholar 

  37. Tun KS, Gupta M (2009) Development of magnesium/(yttria plus nickel) hybrid nanocomposites using hybrid microwave sintering: microstructure and tensile properties. J Alloy Compd 487(1–2):76–82. https://doi.org/10.1016/j.jallcom.2009.07.117

    Article  Google Scholar 

  38. Tarat A, Nettle CJ, Bryant DTJ, Jones DR, Penny MW, Brown RA, Majitha R, Meissner KE, Maffeis TGG (2014) Microwave-assisted synthesis of layered basic zinc acetate nanosheets and their thermal decomposition into nanocrystalline ZnO. Nanoscale Res Lett 9:Artn 11. https://doi.org/10.1186/1556-276x-9-11

    Article  Google Scholar 

  39. Reddy MP, Ubaid F, Shakoor RA, Parande G, Manakari V, Mohamed AMA, Gupta M (2017) Effect of reinforcement concentration on the properties of hot extruded Al-Al2O3 composites synthesized through microwave sintering process. Mater Sci Eng A 696:60–69. https://doi.org/10.1016/j.msea.2017.04.064

    Article  Google Scholar 

  40. Moya JS, Lopez-Esteban S, Pecharroman C (2007) The challenge of ceramic/metal microcomposites and nanocomposites. Prog Mater Sci 52(7):1017–1090. https://doi.org/10.1016/j.pmatsci.2006.09.003

    Article  Google Scholar 

  41. He BB, Hu B, Yen HW, Cheng GJ, Wang ZK, Luo HW, Huang MX (2017) High dislocation density-induced large ductility in deformed and partitioned steels. Science 357(6355):1029–1032. https://doi.org/10.1126/science.aan0177

    Article  Google Scholar 

  42. Kim CS, Cho K, Manjili MH, Nezafati M (2017) Mechanical performance of particulate-reinforced Al metal-matrix composites (MMCs) and Al metal-matrix nano-composites (MMNCs). J Mater Sci 52(23):13319–13349. https://doi.org/10.1007/s10853-017-1378-x

    Article  Google Scholar 

  43. Rahimian M, Ehsani N, Parvin N, Baharvandi HR (2009) The effect of particle size, sintering temperature and sintering time on the properties of Al-Al2O3 composites, made by powder metallurgy. J Mater Process Technol 209(14):5387–5393. https://doi.org/10.1016/j.jmatprotec.2009.04.007

    Article  Google Scholar 

  44. Krause H, Tackenberg W (1980) The influence of hardness difference on the frictional and wear behaviour of steel/copper alloy pairs in plane sliding friction under mixed friction conditions. Wear 64:291–302. https://doi.org/10.1016/0043-1648(80)90135-0

    Article  Google Scholar 

  45. So H, Yu DS, Chuang CY (2002) Formation and wear mechanism of tribo-oxides and the regime of oxidational wear of steel. Wear 253:1004–1015. https://doi.org/10.1016/S0043-1648(02)00230-2

    Article  Google Scholar 

  46. Mueller S, Wirtz C, Trauth D, Klocke F (2017) Plastic deformability at micro-scale of fiber-reinforced ceramics with porous matrix during grinding. Procedia Engineering 207:119–124. https://doi.org/10.1016/J.PROENG.2017.10.748

    Article  Google Scholar 

Download references

Funding

This research is supported by the National Natural Science Foundation of China under the research Grant No. 51575174.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Huang, L., Luo, H. et al. Study effects on diamond concentration of CuSnFeNi/diamond composite on grinding WC. Int J Adv Manuf Technol 104, 2863–2873 (2019). https://doi.org/10.1007/s00170-019-04033-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04033-1

Keywords

Navigation