Skip to main content
Log in

Adaptive homography-based visual servo for micro unmanned surface vehicles

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this paper, a novel adaptive homography-based visual servo (AHBVS) scheme is proposed to regulate a micro unmanned surface vehicle (MUSV) to the desired pose in the presence of both unknown image depth and unmatched dynamics. By virtue of homography decomposition technique, the scaled pose errors are directly retrieved from the live and desired images which are captured by a monocular camera. On the basis of the MUSV characteristics, a completely new visual servo system is firstly derived from visual measurements including both kinematics and dynamics. Different from kinematics solutions, the dynamics-level AHBVS controllers adapting to unknown image depth and compensating unmatched dynamics are developed by incorporating backstepping technique and Lyapunov synthesis, and thereby facilitating practical implementations. Lyapunov analysis proves that the proposed AHBVS scheme renders the closed-loop visual servo system globally uniformly asymptotically stable (GUAS). Simulation results demonstrate remarkable performance on a prototype MUSV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Karimi HR (2018) Variable structure control via coupled surfaces for control effort reduction in remotely operated vehicles. In: Offshore Mechatron Syst Eng, pp 171–191

  2. Wang N, Karimi HR, Li HY, Su SF (2019) Accurate trajectory tracking of disturbed surface vehicles: a finite-time control approach. IEEE/ASME Trans Mechatron. https://doi.org/10.1109/TMECH.2019.2906395

    Article  Google Scholar 

  3. Wu Y, Karimi HR, Lu R (2018) Sampled-data control of network systems in industrial manufacturing. Trans Ind Electron 65(11):9016–9024

    Article  Google Scholar 

  4. Xie M, Shakoor A, Shen Y, Mills JK, Sun D (2019) Out-of-plane rotation control of biological cells with a robot-tweezers manipulation system for orientation-based cell surgery. Trans Biomed Eng 66(1):199–207. https://doi.org/10.1109/TBME.2018.2828136

    Article  Google Scholar 

  5. Wu Z, Jiang B, Kao Y (2019) Finite-time \(\mathcal {H}_{\infty }\) filtering for Itô stochastic Markovian jump systems with distributed time-varying delays based on optimisation algorithm. IET Control Theory Appl 13(5):702–710. https://doi.org/10.1049/iet-cta.2018.6119

    Article  MathSciNet  Google Scholar 

  6. Wang N, Xie G, Pan X, Su SF (2019) Full-state regulation control of asymmetric underactuated surface vehicles. Trans Ind Electron. https://doi.org/10.1109/TIE.2018.2890500

    Article  Google Scholar 

  7. Fang Y, Dixon WE, Dawson DM, Prakash C (2005) Homography-based visual servo regulation of mobile robots. Trans Syst Man Cybern Cybern 35(5):1041–1050

    Article  Google Scholar 

  8. Chaumette F, Hutchinson S (2006) Visual servo control. I. Basic approaches. Robot Autom Mag 13(4):82–90

    Article  Google Scholar 

  9. Chaumette F, Hutchinson S (2007) Visual servo control. II. Advanced approaches. Robot Autom Mag 14 (1):109–118

    Article  Google Scholar 

  10. Deng C, Yang GH (2019) Distributed adaptive fault-tolerant control approach to cooperative output regulation for linear multi-agent systems. Automatica 103:62–68

    Article  MathSciNet  MATH  Google Scholar 

  11. Malis E, Chaumette F (2000) 2 1/2 D Visual servoing with respect to unknown objects through a new estimation scheme of camera displacement. Int J Comput Vision 37(1):79–97

    Article  MATH  Google Scholar 

  12. Benhimane S, Malis E (2007) Homography-based 2D visual tracking and servoing. Int J Robot Res 26(7):661–676

    Article  Google Scholar 

  13. Chen J, Dixon WE, Dawson DM, Mcintire M (2006) Homography-based visual servo tracking control of a wheeled mobile robot. Trans Robot 22(2):406–415

    Article  Google Scholar 

  14. Li B, Zhang X, Fang Y, Shi W (2018) Visual servo regulation of wheeled mobile robots with simultaneous depth identification. Trans Ind Electron 65(1):460–469

    Article  Google Scholar 

  15. Zhang X, Wang R, Fang Y, Li B, Ma B (2017) Acceleration-level pseudo-dynamic visual servoing of mobile robots with backstepping and dynamic surface control. Trans Syst Man Cybern Syst (99):1–11. https://doi.org/10.1109/TSMC.2017.2777897

    Article  Google Scholar 

  16. Zhang K, Chen J, Li Y, Gao Y (2018) Unified visual servoing tracking and regulation of wheeled mobile robots with an uncalibrated camera. Trans Mechatron 23(4):1728–1739

    Article  Google Scholar 

  17. Hu G, Dixon WE, Gupta S, Fitz-Coy N (2006) A quaternion formulation for homography-based visual servo control. In: Int Conf Robot Automat, pp 2391–2396

  18. Chitrakaran VK, Dawson DM, Kannan H, Feemster M (2006) Vision assisted autonomous path following for unmanned aerial vehicles. In: Conf Decision Control, pp 63–68

  19. De Plinval H, Morin P, Mouyon P, Hamel T (2014) Visual servoing for underactuated VTOL UAVs: a linear, homography-based framework. Int J Robust Nonlinear Control 24(16):2285–2308

    Article  MATH  Google Scholar 

  20. Hua MD, Allibert G, Krupínski S, Hamel T (2014) Homography-based visual servoing for autonomous underwater vehicles. IFAC Proc 47(3):5726–5733

    Article  Google Scholar 

  21. Krupínski S, Allibert G, Hua MD, Hamel T (2017) An inertial-aided homography-based visual servo control approach for (almost) fully actuated autonomous underwater vehicles. Trans Robot 33(5):1041–1060

    Article  Google Scholar 

  22. Wang N, Deng Q, Xie G, Pan X (2019) Hybrid finite-time trajectory tracking control of a quadrotor. ISA transactions. https://doi.org/10.1016/j.isatra.2018.12.042

    Article  Google Scholar 

  23. Qin H, Wu Z, Sun Y, Chen H (2019) Disturbance-observer-based prescribed performance fault-tolerant trajectory tracking control for ocean bottom flying node. IEEE Access 7:49004–49013

    Article  Google Scholar 

  24. Yu C, Xiang X, Lapierre L, Zhang Q (2018) Robust magnetic tracking of subsea cable by AUV in the presence of sensor noise and ocean currents. IEEE J Oceanic Eng 43(2):311–322

    Article  Google Scholar 

  25. Wang N, Sun Z, Yin J, Zou Z, Su SF (2019) Fuzzy unknown observer-based robust adaptive path following control of underactuated surface vehicles subject to multiple unknowns. Ocean Eng 176:57–64. https://doi.org/10.1016/j.oceaneng.2019.02.017

    Article  Google Scholar 

  26. Martins A, Almeida JM, Ferreira H, Silva H, Dias N, Dias A, Almeida C, Silva E (2007) Autonomous surface vehicle docking manoeuvre with visual information. In: IEEE Int Conf Robot Automat. IEEE, pp 4994–4999

  27. Dunbabin M, Lang B, Wood B (2008) Vision-based docking using an autonomous surface vehicle. In: IEEE Int Conf Robot Automat. IEEE, pp 26–32

  28. Kim YH, Lee SW, Yang HS, Shell DA (2012) Toward autonomous robotic containment booms: visual servoing for robust inter-vehicle docking of surface vehicles, vol 5. https://doi.org/10.1007/s11370-011-0100-0

    Article  Google Scholar 

  29. Wang J, Liu JY, Yi H (2017) Formation control of unmanned surface vehicles with sensing constraints using exponential remapping method. Mathemat Problems Eng 2017:1–14

    MathSciNet  Google Scholar 

  30. Wang K, Liu Y, Li L (2015) Vision-based tracking control of underactuated water surface robots without direct position measurement. IEEE Trans Control Syst Technol 23(6):2391–2399

    Article  Google Scholar 

  31. Hu G, MacKunis W, Gans N, Dixon WE, Chen J, Behal A, Dawson D (2009) Homography-based visual servo control with imperfect camera calibration. Trans Autom Control 54(6):1318–1324

    Article  MathSciNet  MATH  Google Scholar 

  32. Lowe DG (1999) Object recognition from local scale-invariant features. In: ICCV, vol 99, pp 1150–1157

  33. Leutenegger S, Chli M, Siegwart R (2011) Brisk: binary robust invariant scalable keypoints. In: ICCV, pp 2548–2555

  34. Bay H, Ess A, Tuytelaars T, Van Gool L (2008) Speeded-up robust features (SURF). Comput Vis Image Underst 110(3):346–359

    Article  Google Scholar 

  35. Rosten E, Porter R, Drummond T (2010) Faster and better: a machine learning approach to corner detection. Trans Pattern Anal Mach Intell 32(1):105–119

    Article  Google Scholar 

  36. Wang N, Su SF, Han M, Chen WH (2018) Backpropagating constraints-based trajectory tracking control of a quadrotor with constrained actuator dynamics and complex unknowns. IEEE Trans Sys Man Cybern Syst (99):1–16. https://doi.org/10.1109/TSMC.2018.2834515C

  37. Zhang Z (1999) Flexible camera calibration by viewing a plane from unknown orientations. Int conf computer vision, vol 1, pp 666–673

  38. Zhang H, Ostrowski JP (1999) Visual servoing with dynamics: control of an unmanned blimp. In: Int conf robot automat, vol 1, pp 618–623

  39. Zhang Z, Hanson AR (1995) Scaled Euclidean 3D reconstruction based on externally uncalibrated cameras. In: Int Symp Computer Vision, pp 37–42

  40. Faugeras OD, Lustman F (1988) Motion and structure from motion in a piecewise planar environment. Int J Pattern Recogn Artific Intell 2(03):485–508

    Article  Google Scholar 

  41. Wang N, Su SF, Pan X, Yu X, Xie G (2018) Yaw-guided trajectory tracking control of an asymmetric underactuated surface vehicle. Trans Ind Informat. https://doi.org/10.1109/TII.2018.2877046

    Article  Google Scholar 

  42. Ghommam J, Mnif F, Benali A, Poisson G (2007) Observer design for Euler Lagrange systems: application to path following control of an underactuated surface vessel. In: Int Conf Intell Robots Syst, pp 2883–2888

  43. Khalil H (1996) Nonlinear systems, 2nd edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of P. R. China (under Grants 51009017 and 51379002), the Fund for Dalian Distinguished Young Scholars (under Grant 2016RJ10), the Liaoning Revitalization Talents Program (under Grant XLYC1807013), the Stable Supporting Fund of Science and Technology on Underwater Vehicle Laboratory (SXJQR2018WDKT03), and the Fundamental Research Funds for the Central Universities (under Grants 3132016314 and 3132018126).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., He, H. Adaptive homography-based visual servo for micro unmanned surface vehicles. Int J Adv Manuf Technol 105, 4875–4882 (2019). https://doi.org/10.1007/s00170-019-03994-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-03994-7

Keywords

Navigation