Skip to main content

Influences of zirconium tungstate additives on characteristics of polyvinylidene fluoride (PVDF) components fabricated via material extrusion additive manufacturing process

Abstract

Polyvinylidene fluoride (PVDF), a thermoplastic material with excellent resilience and piezoelectric potential, is a natural candidate for use in filament-based additive manufacturing technologies. However, due to the high thermal expansion and low surface energy of homopolymer PVDF, fabrication of this polymer via extrusion deposition processes is challenging, often resulting in substantial stress accumulation and unwanted distortion in printed parts. To address these challenges, this work investigates the effects of adding microscale zirconium tungstate particulate to improve the printability of PVDF materials. Zirconium tungstate was specifically selected because for its demonstrated negative coefficient of thermal expansion over the range of standard filament extrusion deposition method processing temperatures. Composite filament specimens were characterized with respect to mechanical, thermal, and microstructural properties. Compared with pure homopolymer printed specimens, results show that the particulate additives effectively lowered the net coefficient of thermal expansion at the expense of yield strength and total elongation to failure, while the semi-crystalline structure showed a mild reduction in β-phase formation associated with increasing particulate content.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Novakova-Marcincinova L, Kuric I (2012) Basic and advanced materials for fused deposition modeling rapid prototyping technology. Manuf Ind Eng 11(1):24–27

    Google Scholar 

  2. Sencadas V, Gregorio R Jr, Lanceros-Méndez S (2009) α to β phase transformation and microestructural changes of PVDF films induced by uniaxial stretch. J Macromol Sci 48(3):514–525

    Article  Google Scholar 

  3. Ueberschlag P (2001) PVDF piezoelectric polymer. Sens Rev 21(2):118–126

    Article  Google Scholar 

  4. Sirohi J, Chopra I (2000) Fundamental understanding of piezoelectric strain sensors. J Intell Mater Syst Struct 11(4):246–257

    Article  Google Scholar 

  5. Martins P, Lopes A, Lanceros-Mendez S (2014) Electroactive phases of poly (vinylidene fluoride): determination, processing and applications. Prog Polym Sci 39(4):683–706

    Article  Google Scholar 

  6. Salimi A, Yousefi A (2003) Analysis method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polym Test 22(6):699–704

    Article  Google Scholar 

  7. Tarbuttona J, Leb T, Helfrichb G, Kirkpatrickb M (2017) Phase transformation and shock sensor response of additively manufactured piezoelectric PVDF. Procedia Manuf 10:982–989

    Article  Google Scholar 

  8. Mhetre MR, Abhyankar HK (2017) Human exhaled air energy harvesting with specific reference to PVDF film. Eng Sci Technol Int J 20(1):332–339

    Article  Google Scholar 

  9. Shapiro Y, Kósa G, Wolf A (2014) Shape tracking of planar hyper-flexible beams via embedded PVDF deflection sensors. IEEE/ASME Trans Mechatron 19(4):1260–1267

    Article  Google Scholar 

  10. Seminara L et al (2013) Piezoelectric polymer transducer arrays for flexible tactile sensors. IEEE Sensors J 13(10):4022–4029

    Article  Google Scholar 

  11. Jafer E, Arshak K (2008) The use of PE/PVDF pressure and temperature sensors in smart wireless sensor network system developed for environmental monitoring. Sens Lett 6(4):477–489

    Article  Google Scholar 

  12. Ramadan KS, Sameoto D, Evoy S (2014) A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater Struct 23(3):033001

    Article  Google Scholar 

  13. Mohebbi A, Mighri F, Ajji A, Rodrigue D (2018) Cellular polymer ferroelectret: a review on their development and their piezoelectric properties. Adv Polym Technol 37(2):468–483

    Article  Google Scholar 

  14. Porter DA, Hoang TV, Berfield TA (2017) Effects of in-situ poling and process parameters on fused filament fabrication printed PVDF sheet mechanical and electrical properties. Addit Manuf 13:81–92

    Article  Google Scholar 

  15. Kirkpatrick MB et al (2016) Characterization of 3D printed piezoelectric sensors: determination of d 33 piezoelectric coefficient for 3D printed polyvinylidene fluoride sensors. In: SENSORS, 2016 IEEE. IEEE

  16. Kim H, Fernando T, Li M, Lin Y, Tseng TLB (2018) Fabrication and characterization of 3D printed BaTiO3/PVDF nanocomposites. J Compos Mater 52(2):197–206

    Article  Google Scholar 

  17. Kim H, Torres F, Wu Y, Villagran D, Lin Y, Tseng TL(B) (2017) Integrated 3D printing and corona poling process of PVDF piezoelectric films for pressure sensor application. Smart Mater Struct 26(8):085027

    Article  Google Scholar 

  18. Cheng S, Lau KT, Liu T, Zhao Y, Lam PM, Yin Y (2009) Mechanical and thermal properties of chicken feather fiber/PLA green composites. Compos Part B 40(7):650–654

    Article  Google Scholar 

  19. Kantaros A, Karalekas D (2013) Fiber Bragg grating based investigation of residual strains in ABS parts fabricated by fused deposition modeling process. Mater Des 50:44–50

    Article  Google Scholar 

  20. Economidou SN, Karalekas D (2016) Optical sensor-based measurements of thermal expansion coefficient in additive manufacturing. Polym Test 51:117–121

    Article  Google Scholar 

  21. Wang Y, Cakmak M (1998) Hierarchical structure gradients developed in injection-molded PVDF and PVDF–PMMA blends. I. Optical and thermal analysis. J Appl Polym Sci 68(6):909–926

    Article  Google Scholar 

  22. Zhong GJ, Li ZM (2005) Injection molding-induced morphology of thermoplastic polymer blends. Polym Eng Sci 45(12):1655–1665

    Article  Google Scholar 

  23. Hwang S, Reyes EI, Moon KS, Rumpf RC, Kim NS (2015) Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process. J Electron Mater 44(3):771–777

    Article  Google Scholar 

  24. Lous GM, Cornejo IA, McNulty TF, Safari A, Danforth SC (2000) Fabrication of piezoelectric ceramic/polymer composite transducers using fused deposition of ceramics. J Am Ceram Soc 83(1):124–128

    Article  Google Scholar 

  25. Masood S, Song W (2004) Development of new metal/polymer materials for rapid tooling using fused deposition modelling. Mater Des 25(7):587–594

    Article  Google Scholar 

  26. Ning F, Cong W, Qiu J, Wei J, Wang S (2015) Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos Part B 80:369–378

    Article  Google Scholar 

  27. Chu X et al (2010) Mechanical and thermal expansion properties of glass fibers reinforced PEEK composites at cryogenic temperatures. Cryogenics 50(2):84–88

    Article  Google Scholar 

  28. Luo N, Xu R, Yang M, Yuan X, Zhong H, Fan Y (2015) Preparation and characterization of PVDF-glass fiber composite membrane reinforced by interfacial UV-grafting copolymerization. J Environ Sci 38:24–35

    Article  Google Scholar 

  29. Oddone V, Wimpory RC, Reich S (2019) Understanding the negative thermal expansion in planar graphite–metal composites. J Mater Sci 54(2):1267–1274

    Article  Google Scholar 

  30. Evans JS (1999) Negative thermal expansion materials. J Chem Soc Dalton Transactions (19):3317–3326

  31. Takenaka K (2012) Negative thermal expansion materials: technological key for control of thermal expansion. Sci Technol Adv Mater 13(1):013001

    Article  Google Scholar 

  32. Niknam Momenzadeh HM, Porter D, Berfield T (2018) Polyvinylidene fluoride (PVDF) as a feedstock material in material extrusion additive manufacturing process. Rapid Prototyp J

  33. Turner, P.S., The problem of thermal-expansion stresses in reinforced plastics. 1942

    Google Scholar 

  34. Johnson RR, Kural MH, Mackey GB (1981) Thermal expansion properties of composite materials. Lockheed Missiles and Space Co Inc, Sunnyvale

    Google Scholar 

  35. James J et al (2001) A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures. Meas Sci Technol 12(3):R1–R15

    Article  Google Scholar 

  36. Forster AM (2015) Materials testing standards for additive manufacturing of polymer materials. ST, Department of Commerce, NI

    Google Scholar 

  37. Dizon JRC et al (2017) Mechanical characterization of 3D-printed polymers. Addit Manuf

  38. Huan Y, Liu Y, Yang Y, Wu Y (2007) Influence of extrusion, stretching and poling on the structural and piezoelectric properties of poly (vinylidene fluoride-hexafluoropropylene) copolymer films. J Appl Polym Sci 104(2):858–862

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niknam Momenzadeh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Momenzadeh, N., Miyanaji, H. & Berfield, T.A. Influences of zirconium tungstate additives on characteristics of polyvinylidene fluoride (PVDF) components fabricated via material extrusion additive manufacturing process. Int J Adv Manuf Technol 103, 4713–4720 (2019). https://doi.org/10.1007/s00170-019-03978-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-03978-7

Keywords

  • Additive manufacturing
  • Warping
  • Coefficient of thermal expansion
  • Material extrusion additive manufacturing