Skip to main content
Log in

A predictive association rule-based maintenance policy to minimize the probability of breakages: application to an oil refinery

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Effective maintenance policies can support companies to deal with process interruptions and consequently, to prevent significant profit losses. Moreover, the proliferation of structured and unstructured data due to production plants validates the application of knowledge discovery in databases techniques to increase processes’ reliability. In this paper, an innovative maintenance policy is proposed. It aims at both predicting components breakages through association rule mining and determining the optimal set of components to repair in order to improve the overall plant’s reliability, under time and budget constraints. An experimental campaign is carried out on a real-life case study concerning an oil refinery plant. Finally, numerical results are discussed considering different blockage categories and number of components and by varying some significant input parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The term \(sup({\Gamma } \rightarrow True)\) represents the number of transactions containing the item-set Γ. With a slight abuse of notation, we refer to \(sup({\Gamma } \rightarrow True)\) as the support of Γ.

  2. The time for extracting ARs and that for solving the ILP model are averaged on 5 runs.

References

  1. Accorsi R, Bortolini M, Gamberi M, Manzini R, Pilati F (2017) Multi-objective warehouse building design to optimize the cycle time, total cost, and carbon footprint. Int J Adv Manuf Tech 92(1–4):839–854. https://doi.org/10.1007/s00170-017-0157-9

    Article  Google Scholar 

  2. Agard B, Kusiak A (2004) Data mining for subassembly selection. J Manuf Sci E-T ASME 126(3):627–631. https://doi.org/10.1115/1.1763182

    Article  MATH  Google Scholar 

  3. Alkhamis TM, Yellen J (1995) Refinery units maintenance scheduling using integer programming. Appl Math Model 19(9):543–549. https://doi.org/10.1016/0307-904X(95)00032-F

    Article  MATH  Google Scholar 

  4. Allaoui H, Artiba A (2004) Integrating simulation and optimization to schedule a hybrid flow shop with maintenance constraints. Comput Ind Eng 47(4):431–450. https://doi.org/10.1016/j.cie.2004.09.002

    Article  Google Scholar 

  5. Alrabghi A, Tiwari A (2015) State of the art in simulation-based optimisation for maintenance systems. Comput Ind Eng 82:167–182. https://doi.org/10.1016/j.cie.2014.12.022

    Article  Google Scholar 

  6. Antomarioni S, Bevilacqua M, Potena D, Diamantini C (2019) Defining a data-driven maintenance policy an application to an oil refinery plant. Int J Qual Reliab Manag. https://doi.org/10.1108/IJQRM-01-2018-0012

    Article  Google Scholar 

  7. Bertolini M, Bevilacqua M (2006) A combined goal programming-AHP approach to maintenance selection problem. Reliab Eng Syst Safe 91(7):839–848. https://doi.org/10.1016/j.ress.2005.08.006

    Article  Google Scholar 

  8. Bevilacqua M, Ciarapica FE (2018) Human factor risk management in the process industry: a case study. Reliab Eng Syst Safe 169:149–159. https://doi.org/10.1016/j.ress.2017.08.013

    Article  Google Scholar 

  9. Bortolini M, Ferrari E, Gamberi M, Pilati F, Faccio M (2017) Assembly system design in the industry 4.0 era: a general framework. IFAC-PapersOnLine 50(1):5700–5705. https://doi.org/10.1016/j.ifacol.2017.08.1121

    Article  Google Scholar 

  10. Bortolini M, Gamberi M, Mora C, Pilati F, Regattieri A (2017) Design, prototyping, and assessment of a wastewater closed-loop recovery and purification system. Sustainability 9(11):1938. https://doi.org/10.3390/su9111938

    Article  Google Scholar 

  11. Buddhakulsomsiri J, Siradeghyan Y, Zakarian A, Li X (2006) Association rule-generation algorithm for mining automotive warranty data. Int J Prod Res 44(14):2749–2770. https://doi.org/10.1080/00207540600564633

    Article  MATH  Google Scholar 

  12. Cassady CR, Bowden RO, Liew L, Pohl EA (2000) Combining preventive maintenance and statistical process control: a preliminary investigation. Iie Trans 32(6):471–478. https://doi.org/10.1080/07408170008963924

    Article  Google Scholar 

  13. Chalabi N, Dahane M, Beldjilali B, Neki A (2016) Optimisation of preventive maintenance grouping strategy for multi-component series systems: particle swarm based approach. Comput Ind Eng 102:440–451. https://doi.org/10.1016/j.cie.2016.04.018

    Article  Google Scholar 

  14. Chen MC (2003) Configuration of cellular manufacturing systems using association rule induction. Int J Prod Res 41(2):381–395. https://doi.org/10.1080/0020754021000024184

    Article  MATH  Google Scholar 

  15. Chen WC, Tseng SS, Wang CY (2004) A novel manufacturing defect detection method using data mining approach. In: International conference on industrial, engineering and other applications of applied intelligent systems. Springer, pp 77–86. https://doi.org/10.1007/978-3-540-24677-0_9

    Chapter  Google Scholar 

  16. Choudhary AK, Harding JA, Tiwari MK (2009) Data mining in manufacturing: a review based on the kind of knowledge. J Intell Manuf 20(5):501. https://doi.org/10.1007/s10845-008-0145-x

    Article  Google Scholar 

  17. Da Cunha C, Agard B, Kusiak A (2006) Data mining for improvement of product quality. Int J Prod Res 44(18-19):4027–4041. https://doi.org/10.1080/00207540600678904

    Article  MATH  Google Scholar 

  18. Dekker R (1996) Applications of maintenance optimization models: a review and analysis. Reliab Eng Syst Safe 51(3):229–240. https://doi.org/10.1016/0951-8320(95)00076-3

    Article  Google Scholar 

  19. Diamantini C, Potena D, Storti E (2013) A virtual mart for knowledge discovery in databases. Inform Syst Front 15(3):447–463. https://doi.org/10.1007/s10796-012-9399-0

    Article  Google Scholar 

  20. Ding SH, Kamaruddin S (2015) Maintenance policy optimization-literature review and directions. Int J Adv Manuf Tech 76(5–8):1263–1283. https://doi.org/10.1007/s00170-014-6341-2

    Article  Google Scholar 

  21. Djatna T, Alitu IM (2015) An application of association rule mining in total productive maintenance strategy: an analysis and modelling in wooden door manufacturing industry. Procedia Manufacturing 4:336–343. https://doi.org/10.1016/j.promfg.2015.11.049

    Article  Google Scholar 

  22. Fayyad U, Piatetsky-Shapiro G, Smyth P (1996) From data mining to knowledge discovery in databases. AI mag 17(3):37. https://doi.org/10.1609/aimag.v17i3.1230

    Article  Google Scholar 

  23. Gharbi A, Kenné JP (2005) Maintenance scheduling and production control of multiple-machine manufacturing systems. Comput Ind Eng 48(4):693–707. https://doi.org/10.1016/j.cie.2004.12.007

    Article  Google Scholar 

  24. Goel HD, Grievink J, Weijnen MP (2003) Integrated optimal reliable design, production, and maintenance planning for multipurpose process plants. Comput Chem Eng 27(11):1543–1555 . https://doi.org/10.1016/S0098-1354(03)00090-5

    Article  Google Scholar 

  25. Hadjaissa B, Ameur K, Essounbouli N, et al. (2016) Bi-objective optimization of maintenance scheduling for power systems. Int J Adv Manuf Tech 85(5-8):1361–1372. https://doi.org/10.1007/s00170-015-8053-7

    Article  Google Scholar 

  26. Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation. SIGMOD Rec 29 (2):1–12. https://doi.org/10.1145/335191.335372

    Article  Google Scholar 

  27. Harding J, Shahbaz M, Kusiak A, et al. (2006) Data mining in manufacturing: a review. J Manuf Sci E-T ASME 128(4):969–976. https://doi.org/10.1115/1.2194554

    Article  Google Scholar 

  28. Ilgin MA, Tunali S (2007) Joint optimization of spare parts inventory and maintenance policies using genetic algorithms. Int J Adv Manuf Tech 34(5–6):594–604. https://doi.org/10.1007/s00170-006-0618-z

    Article  Google Scholar 

  29. Irawan CA, Ouelhadj D, Jones D, Stålhane M, Sperstad IB (2017) Optimisation of maintenance routing and scheduling for offshore wind farms. Eur J Oper Res 256(1):76–89. https://doi.org/10.1016/j.ejor.2016.05.059

    Article  MathSciNet  MATH  Google Scholar 

  30. Kamsu-Foguem B, Rigal F, Mauget F (2013) Mining association rules for the quality improvement of the production process. Expert Syst Appl 40 (4):1034–1045. https://doi.org/10.1016/j.eswa.2012.08.039

    Article  Google Scholar 

  31. Kenné JP, Boukas E, Gharbi A (2003) Control of production and corrective maintenance rates in a multiple-machine, multiple-product manufacturing system. Math Comput Model 38(3–4):351–365. https://doi.org/10.1016/S0895-7177(03)90093-8

    Article  MathSciNet  MATH  Google Scholar 

  32. Laggoune R, Chateauneuf A, Aissani D (2010) Impact of few failure data on the opportunistic replacement policy for multi-component systems. Reliab Eng Syst Safe 95(2):108–119. https://doi.org/10.1016/j.ress.2009.08.007

    Article  Google Scholar 

  33. Lee HT, Yang DL, Yang SJ (2013) Multi-machine scheduling with deterioration effects and maintenance activities for minimizing the total earliness and tardiness costs. Int J Adv Manuf Tech 66(1-4):547–554. https://doi.org/10.1007/s00170-012-4348-0

    Article  Google Scholar 

  34. Marseguerra M, Zio E, Podofillini L (2002) Condition-based maintenance optimization by means of genetic algorithms and monte carlo simulation. Reliab Eng Syst Safe 77(2):151–165. https://doi.org/10.1016/S0951-8320(02)00043-1

    Article  Google Scholar 

  35. Mokhtari H, Mozdgir A, Kamal Abadi IN (2012) A reliability/availability approach to joint production and maintenance scheduling with multiple preventive maintenance services. Int J Prod Res 50(20):5906–5925. https://doi.org/10.1080/00207543.2011.637092

    Article  Google Scholar 

  36. Nedic N, Prsic D, Dubonjic L, Stojanovic V, Djordjevic V (2014) Optimal cascade hydraulic control for a parallel robot platform by PSO. Int Journal Adv Manuf Tech 72 (5-8):1085–1098. https://doi.org/10.1007/s00170-014-5735-5

    Article  Google Scholar 

  37. Nedic N, Stojanovic V, Djordjevic V (2015) Optimal control of hydraulically driven parallel robot platform based on firefly algorithm. Nonlinear Dynam 82(3):1457–1473. https://doi.org/10.1007/s11071-015-2252-5

    Article  MathSciNet  Google Scholar 

  38. Nedić N, Pršić D, Fragassa C, Stojanović V, Pavlovic A (2017) Simulation of hydraulic check valve for forestry equipment. Int J Heavy Veh Syst 24(3):260–276. https://doi.org/10.1504/IJHVS.2017.084875

    Article  Google Scholar 

  39. Olafsson S, Li X, Wu S (2008) Operations research and data mining. Eur J Oper Res 187(3):1429–1448. https://doi.org/10.1016/j.ejor.2006.09.023

    Article  MathSciNet  MATH  Google Scholar 

  40. Pardalos PM, Hansen P (2008) Data mining and mathematical programming, vol 45. American Mathematical Soc. https://doi.org/10.1023/A:1009735908398

    Article  Google Scholar 

  41. Martínez-de Pisón FJ, Sanz A, Martínez-de Pisón E, Jiménez E, Conti D (2012) Mining association rules from time series to explain failures in a hot-dip galvanizing steel line. Comput Ind Eng 63(1):22–36. https://doi.org/10.1016/j.cie.2012.01.013

    Article  Google Scholar 

  42. Pistikopoulos EN, Vassiliadis CG, Papageorgiou LG (2000) Process design for maintainability: an optimization approach. Comput Chem Eng 24(2–7):203–208. https://doi.org/10.1016/S0098-1354(00)00514-7

    Article  Google Scholar 

  43. Rezg N, Xie X, Mati Y (2004) Joint optimization of preventive maintenance and inventory control in a production line using simulation. Int J Prod Res 42(10):2029–2046. https://doi.org/10.1080/00207540310001638235

    Article  MATH  Google Scholar 

  44. Rygielski C, Wang JC, Yen DC (2002) Data mining techniques for customer relationship management. Technol Soc 24(4):483–502. https://doi.org/10.1088/1742-6596/910/1/012021

    Article  Google Scholar 

  45. Sarker R, Haque A (2000) Optimization of maintenance and spare provisioning policy using simulation. Appl Math Model 24 (10):751–760. https://doi.org/10.1016/S0307-904X(00)00011-1

    Article  MATH  Google Scholar 

  46. Shafiee M (2017) Maintenance optimization and inspection planning of wind energy assets: models, methods and strategies. Reliab Eng Syst Safe. https://doi.org/10.1016/j.ress.2017.10.025

    Article  Google Scholar 

  47. Nedic N (2016) A nature inspired parameter tuning approach to cascade control for hydraulically driven parallel robot platform. J Optimiz Theory App 168(1):332–347. https://doi.org/10.1007/s10957-015-0706-z

    Article  MathSciNet  MATH  Google Scholar 

  48. Stojanovic V, Nedic N, Prsic D, Dubonjic L, Djordjevic V (2016) Application of cuckoo search algorithm to constrained control problem of a parallel robot platform. Int J Adv Manuf Tech 87(9–12):2497–2507. https://doi.org/10.1007/s00170-016-8627-z

    Article  Google Scholar 

  49. Tagaras G (1988) An integrated cost model for the joint optimization of process control and maintenance. J Oper Res Soc 39(8):757–766. https://doi.org/10.1057/jors.1988.131

    Article  MATH  Google Scholar 

  50. Vilarinho S, Lopes I, Oliveira JA (2017) Preventive maintenance decisions through maintenance optimization models: a case study. Procedia Manufacturing 11:1170–1177. https://doi.org/10.1016/j.promfg.2017.07.241

    Article  Google Scholar 

  51. Wang K (2007) Applying data mining to manufacturing: the nature and implications. J Intell Manuf 18 (4):487–495. https://doi.org/10.1007/s10845-007-0053-5

    Article  Google Scholar 

  52. Wang S, Liu M (2015) Multi-objective optimization of parallel machine scheduling integrated with multi-resources preventive maintenance planning. J Manuf Syst 37:182–192. https://doi.org/10.1016/j.jmsy.2015.07.002

    Article  Google Scholar 

  53. Wang Z, Shao X, Zhang G, Zhu H (2005) Integration of variable precision rough set and fuzzy clustering: an application to knowledge acquisition for manufacturing process planning. In: International workshop on rough sets, fuzzy sets, data mining, and granular-soft computing. https://doi.org/10.1007/11548706_62. Springer, pp 585–593

    Google Scholar 

  54. Xia T, Xi L, Lee J, Zhou X (2011) Optimal CBPM policy considering maintenance effects and environmental condition. Int J Adv Manuf Tech 56(9–12):1181–1193. https://doi.org/10.1007/s00170-011-3235-4

    Article  Google Scholar 

  55. Xia T, Xi L, Zhou X, Lee J (2013) Condition-based maintenance for intelligent monitored series system with independent machine failure modes. Int J Prod Res 51(15):4585–4596. https://doi.org/10.1080/00207543.2013.775524

    Article  Google Scholar 

  56. Zhang S, Wu X (2011) Fundamentals of association rules in data mining and knowledge discovery. Wires Data Min Knowl 1(2):97–116. https://doi.org/10.1002/widm.10

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Antomarioni.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antomarioni, S., Pisacane, O., Potena, D. et al. A predictive association rule-based maintenance policy to minimize the probability of breakages: application to an oil refinery. Int J Adv Manuf Technol 105, 3661–3675 (2019). https://doi.org/10.1007/s00170-019-03822-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-03822-y

Keywords

Navigation