Skip to main content
Log in

An equivalent geometry model for turning tool with nose and edge radii

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this study, an equivalent tool geometry was presented, while taking into account the cutting-tool nose and edge radii. The main idea consists in considering that the equivalent geometry induces the same cutting force components as the real tool. In this context, equivalent cutting angle, equivalent direction angle, equivalent uncut chip thickness, and equivalent depth of cut are defined for the new tool geometry. A dual contact at the tool-chip interface, sticking and sliding zones, is considered in the developed thermomechanical model. The influences of the nose and edge radii on the cutting performances are studied. A well agreement was found between analytical and experimental results for different cutting conditions. It is underlined that feed and radial forces are the most sensitive components to nose and edge radii. The proposed equivalent tool has great potential for other applications such as tool wear studying while considering coatings and chip breaker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

A, B, n, m, v :

constants of Johnson–Cook Constitutive law

\( {b}_0^{eq} \) :

equivalent width of cut, mm

C 0 :

constant of Oxley

f 0 :

feed rate, mm/rev

F c, F f, F r :

cutting force components, N

h :

thickness of the shear band on the primary shear plane, mm

h c :

length of linear contact at the tool-chip interface, mm

h r :

length of circular contact at the tool-chip interface, mm

h p :

length of the sticking zone at the tool-chip interface, mm

\( {l}_c^{\mathrm{eq}} \) :

equivalent contact length at the tool-chip interface, mm

L AE :

length of the shear plane, mm

N s, T s :

normal and tangential forces at the primary shear zone, N

N hc, N hr :

normal forces at the rake face of the real tool, N

T hc, T hr :

tangential forces at the rake face of the real tool, N

Nc :

normal force at the rake face of the equivalent tool, N

Tc :

tangential force at the rake face of the equivalent tool, N

T int :

average temperature at the tool-chip interface, K

T chip :

average temperature of the chip, K

T m :

melting temperature, K

T max :

maximum variation of temperature in the chip, K

T sh :

average temperature at the primary shear plane, K

p 0 :

depth of cut, mm

\( {p}_0^{eq} \) :

equivalent depth of cut, mm

σ 0 :

maximum hydrostatic pressure at the tool-tip, MPa

σ A :

hydrostatic pressure at the beginning of the shear plane, MPa

σ E :

hydrostatic pressure at the endpoint of the shear plane, MPa

r β :

cutting edge radius, mm

r ε :

nose radius, mm

S real :

real uncut chip area, mm2

S sh :

cross-section on the primary shear plane, mm2

t 1 :

uncut chip thickness, mm

\( {t}_1^{eq} \) :

equivalent uncut chip thickness, mm

t 2 :

chip thickness, mm

V c :

cutting speed, m/min.

V sh :

shear velocity, m/min

α n :

normal clearance angle, °

γ n :

normal rake angle, °

\( {\gamma}_n^{eq} \) :

equivalent normal rake angle, °

γ sh :

strain shear

ε sh :

equivalent strain

κ r :

edge direction angle, °

\( {\kappa}_r^{eq} \) :

equivalent edge direction angle, °

λ s :

inclination angle of the cutting edge, °

λ ap :

apparent friction angle, °

ηc :

chip flow angle, °

ηsh :

shear direction angle, °

μ sl :

sliding friction coefficient

μ ap :

apparent friction coefficient

τ f :

shear yield stress, MPa

τ sh :

shear stress, MPa

ϕ n :

normal shear angle, °

References

  1. Abdellaoui L, Bouzid W (2016) Thermomechanical modeling of oblique turning in relation to tool-nose radius. Mach Sci Technol 20:586–614. https://doi.org/10.1080/10910344.2016.1224017

    Article  Google Scholar 

  2. Beauchamp Y, Thomas M (1996) Investigation of cutting parameter effects on surface roughness in lathe boring operation by use of a full factorial design. Comput Ind 31:645–651. https://doi.org/10.1016/S0360-8352(96)00234-3

    Article  Google Scholar 

  3. Campocasso S, Poulachon G, Costes JP, Bissey-Breton S (2014) An innovative experimental study of corner radius effect on cutting forces. CIRP Ann - Manuf Technol 63:121–124. https://doi.org/10.1016/j.cirp.2014.03.076

    Article  Google Scholar 

  4. Endres WJ, Kountanya RK (2002) The effects of corner radius and edge radius on tool flank wear. J Manuf Process 4:89–96. https://doi.org/10.1016/S1526-6125(02)70135-7

    Article  Google Scholar 

  5. Albrecht P (1960) New developments in the theory of the metal-cutting process: part I. the ploughing process in metal cutting. J Eng Ind 82:348. https://doi.org/10.1115/1.3664242

    Article  Google Scholar 

  6. Merchant ME (1945) Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip. J Appl Phys 16:267–275. https://doi.org/10.1063/1.1707586

    Article  Google Scholar 

  7. Hsu TC (1966) A study of the normal and shear stresses on a cutting tool. J Eng Ind 88:51–64

    Article  Google Scholar 

  8. Abdelmoneim ME, Scrutton RF (1974) Tool edge roundness and stable build-up formation in finish machining. J Manuf Sci Eng 96:1258–1267. https://doi.org/10.1115/1.3438504

    Google Scholar 

  9. Manjunathaiah J, Endres WJ (2000) A new model and analysis of orthogonal machining with an edge-radiused tool. J Manuf Sci Eng 122:384. https://doi.org/10.1115/1.1285886

    Article  Google Scholar 

  10. Connolly R, Rubenstein C (1968) The mechanics of continuous chip formation in orthogonal cutting. Int J Mach Tool Des Res 8:159–187. https://doi.org/10.1016/0020-7357(68)90003-6

    Article  Google Scholar 

  11. Bouzakis KD, Michailidis N, Skordaris G, Bouzakis E, Biermann D, M'Saoubi R (2012) Cutting with coated tools: coating technologies, characterization methods and performance optimization. CIRP Ann - Manuf Technol 61:703–723. https://doi.org/10.1016/j.cirp.2012.05.006

    Article  Google Scholar 

  12. Denkena B, Biermann D (2014) Cutting edge geometries. CIRP Ann - Manuf Technol 63:631–653. https://doi.org/10.1016/j.cirp.2014.05.009

    Article  Google Scholar 

  13. Fang N, Wu Q (2005) The effects of chamfered and honed tool edge geometry in machining of three aluminum alloys. Int J Mach Tools Manuf 45:1178–1187. https://doi.org/10.1016/j.ijmachtools.2004.12.003

    Article  Google Scholar 

  14. König W, Komanduri R, Tönshoff HK, Ackershott G (1984) Machining of hard materials. CIRP Ann 33:417–427. https://doi.org/10.1016/S0007-8506(16)30164-0

    Article  Google Scholar 

  15. Hodgson T, Trendler PHH, Micheletti GF (1981) Turning hardened tool steels with cubic boron nitride inserts. CIRP Ann Manuf Technol 30:63–66. https://doi.org/10.1016/S0007-8506(07)60896-8

    Article  Google Scholar 

  16. Childs THC (2006) Friction modelling in metal cutting. Wear 260:310–318. https://doi.org/10.1016/j.wear.2005.01.052

    Article  Google Scholar 

  17. Özel T (2006) The influence of friction models on finite element simulations of machining. Int J Mach Tools Manuf 46:518–530. https://doi.org/10.1016/j.ijmachtools.2005.07.001

    Article  Google Scholar 

  18. Ozlu E, Budak E, Molinari A (2009) Analytical and experimental investigation of rake contact and friction behavior in metal cutting. Int J Mach Tools Manuf 49:865–875. https://doi.org/10.1016/j.ijmachtools.2009.05.005

    Article  Google Scholar 

  19. Bahi S, Nouari M, Moufki A, Mansori ME, Molinari A (2012) Hybrid modelling of sliding-sticking zones at the tool-chip interface under dry machining and tool wear analysis. Wear 286–287:45–54. https://doi.org/10.1016/j.wear.2011.05.001

    Article  Google Scholar 

  20. Zhou F (2014) A new analytical tool-chip friction model in dry cutting. Int J Adv Manuf Technol 70:309–319. https://doi.org/10.1007/s00170-013-5271-8

    Article  Google Scholar 

  21. Germain D, Fromentin G, Poulachon G, Bissey-Breton S (2013) From large-scale to micromachining: a review of force prediction models. J Manuf Process 15:389–401. https://doi.org/10.1016/j.jmapro.2013.02.006

    Article  Google Scholar 

  22. Tay AO, Stevenson MG, de Vahl Davis G, Oxley PLB (1976) A numerical method for calculating temperature distributions in machining, from force and shear angle measurements. Int J Mach Tool Des Res 16:335–349. https://doi.org/10.1016/0020-7357(76)90043-3

    Article  Google Scholar 

  23. Ulutan D, Özel T (2013) Determination of tool friction in presence of flank wear and stress distribution based validation using finite element simulations in machining of titanium and nickel based alloys. J Mater Process Technol 213:2217–2237. https://doi.org/10.1016/j.jmatprotec.2013.05.019

    Article  Google Scholar 

  24. Oxley PLB (1988) Modelling machining processes with a view to their optimization and to the adaptive control of metal cutting machine tools. Robot Comput Integr Manuf 4:103–119. https://doi.org/10.1016/0736-5845(88)90065-8

    Article  Google Scholar 

  25. Abdellaoui L, Bouzid W (2016) Thermomechanical approach for the modeling of oblique machining with a single cutting edge. Mach Sci Technol 20:655–680. https://doi.org/10.1080/10910344.2016.1224020

    Article  Google Scholar 

  26. Moufki A, Dudzinski D, Molinari A, Rausch M (2000) Thermoviscoplastic modelling of oblique cutting: forces and chip flow predictions. Int J Mech Sci 42:1205–1232. https://doi.org/10.1016/S0020-7403(99)00036-3

    Article  MATH  Google Scholar 

  27. Koné F, Czarnota C, Haddag B, Nouari M (2013) Modeling of velocity-dependent chip flow angle and experimental analysis when machining 304L austenitic stainless steel with groove coated-carbide tools. J Mater Process Technol 213:1166–1178. https://doi.org/10.1016/j.jmatprotec.2013.01.015

    Article  Google Scholar 

  28. Bouzid W (1993) Etude expérimentale et numérique de la coupe orthogonale. PhD Thesis, ENSAM

  29. Abdellaoui L (2016) Analyse 3D de l’interaction outil/matière en tournage: Essais et modélisation. PhD Thesis , ENIS

  30. Lurdos O (2008) Lois de comportement et recristallisation dynamique : approches empirique et physique. Phd Thesis, ENSM St.Etienne

  31. Tang L, Cheng Z, Huang J, Gao C, Chang W (2014) Empirical models for cutting forces in finish dry hard turning of hardened tool steel at different hardness levels. Int J Adv Manuf Technol 76:691–703. https://doi.org/10.1007/s00170-014-6291-8

    Article  Google Scholar 

Download references

Funding

This work is carried out with the support and funding allocated to the Unit of Mechanical and Materials Production Engineering (UGPMM/UR17ES43) by the Tunisian Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassen Khlifi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khlifi, H., Abdellaoui, L. & Bouzid Sai, W. An equivalent geometry model for turning tool with nose and edge radii. Int J Adv Manuf Technol 103, 4233–4251 (2019). https://doi.org/10.1007/s00170-019-03787-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-03787-y

Keywords

Navigation