Advertisement

Prediction and comparison of high-cycle fatigue behavior of ultrasonic and conventional shot-peened parts

  • S. ManchoulEmail author
  • R. Seddik
  • R. Ben Sghaier
  • R. Fathallah
ORIGINAL ARTICLE
  • 16 Downloads

Abstract

This paper proposes an engineering approach to investigate the high-cycle fatigue performance of shot-peened parts. The effects of the ultrasonic and conventional shot peening treatments on the fatigue characteristic of AISI 316 l and Waspaloy materials are investigated and compared. This approach consists in (i) developing two 3D finite element models of ultrasonic and conventional shot peening treatments, (ii) predicting initial shot peening surface modifications induced by both models (residual stresses, equivalent plastic strains, superficial damage values, and micro-geometrical irregularities), (iii) evaluating the redistribution of the initial surface modifications after few cyclic loadings, and (iv) deducing the fatigue performance of ultrasonic and conventional shot-peened parts for tensile loadings based on the high-cycle fatigue indicator ISP%. This attempt shows that both treatments exhibit significant potential for increasing the high-cycle fatigue strength of peened targets. However, the degree of fatigue performance improvement is more obvious for the ultrasonic shot peening treatment. The obtained results are physically coherent and in good agreement with the previous experimental investigations found in the literature.

Keywords

High-cycle fatigue performance Ultrasonic shot peening Conventional shot peening Initial surface modifications Tensile loadings Fatigue indicator ISP

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Chaise T, Li J, Nelias D, Kubler R, Taheri S, Douchet G, Robin V, Gilles P (2012) Modeling of multiple impacts for the prediction of distortions and residual stresses induced by ultrasonic shot peening (USP). J Mater Process Technol 212:2080–2090CrossRefGoogle Scholar
  2. 2.
    Li J (2011) Simulation de Réparation par Soudage et Billage Ultrasonore d’un Alliage à Base Nickel. PhD thesis LaMCoS, LyonGoogle Scholar
  3. 3.
    Zhang X, Lu J, Shi S (2011) A computational study of plastic deformation in AISI304 induced by surface mechanical attrition treatment. Mech Adv Mater Struct 18:572–577CrossRefGoogle Scholar
  4. 4.
    Rousseau T, Hoc T, Gilles P, Nouguier-Lehon C (2015) Effect of bead quantity in ultrasonic shot peening: surface analysis and numerical simulations. J Mater Process Technol 225:413–420CrossRefGoogle Scholar
  5. 5.
    Fathallah R, Laamouri A, Sidhom H (2004) High cycle fatigue behavior prediction of shot-peened parts. Int J Fatigue 26:1053–1067CrossRefGoogle Scholar
  6. 6.
    Fathallah R (1994) Modélisation du Procédé de Grenaillage : Incidence des Billes et Taux de Recouvrement. PhD thesis ENSAM, ParisGoogle Scholar
  7. 7.
    Ahmed AA, Mhaede M, Basha M, Wollmann M, Wagner L (2015) The effect of shot peening parameters and hydroxyapatite coating on surface properties and corrosion behavior of medical grade AISI 316 L stainless steel. Surf Coat Technol 280:347–358CrossRefGoogle Scholar
  8. 8.
    Fathallah R, Inglebert G, Castex L (2003) Determination of shot peening coefficient of restitution. Surf Eng 19:109–113CrossRefGoogle Scholar
  9. 9.
    Manchoul S, Seddik R, Ben Sghaier R, Fathallah R (2017). Finite element modeling of ultrasonic and conventional shot peening: a comparison of the effect of both processes on surface conditions. Proceedings of the Institution of Mechanical Engineers Part L Journal of Materials Design and Applications.  https://doi.org/10.1177/1464420717719474, 146442071771947.
  10. 10.
    Dai K, Shaw L (2007) Comparison between shot peening and surface nanocrystallization and hardening processes. Mater Sci Eng A463:46–53CrossRefGoogle Scholar
  11. 11.
    Liu WC, Dong J, Zhang P, Korsunsky AM, Song X, Ding WJ (2011) Improvement of fatigue properties by shot peening for Mg–10Gd–3Y alloys under different conditions. Mater Sci Eng A:528, 5935–528, 5944Google Scholar
  12. 12.
    Torres MAS, Voorwald HJC (2002) An evaluation of shot peening residual stress and stress relaxation on the fatigue life of AISI 4340 steel. Int J Fatigue 24:877–886CrossRefGoogle Scholar
  13. 13.
    K. Dalaei, B. Karlsson, L. E. Svensson: Stability of residual stresses created by shot peening of pearlitic steel and their influence on fatigue lifetime. Mater Sci Eng, 2011, A5282, 1008–1015Google Scholar
  14. 14.
    Fathallah R, Sidhom H, Brahamand C, Castex L (2003) Effect of surface properties on high cycle fatigue behavior of a shot peened ductile steel. Mater Sci Technol 19:1050–1056CrossRefGoogle Scholar
  15. 15.
    Gentil B, Desvignes M, Castex L (1987) Analyse des surfaces grenaillées: Fissuration, rugosité et contraintes résiduelle. Matér Tech 75:493–497CrossRefGoogle Scholar
  16. 16.
    Eleiche AM, Megahed MM, Add-allah NM (2001) The shot peening effect on the HCF behavior of high-strength martensitic steels. J Mater Process Technol 113:502–508CrossRefGoogle Scholar
  17. 17.
    Schutz W (1987) Shot peening of components to improve fatigue strength, Proc. Third Int. Conf. on Shot Peening (ICSP-3), Garmisch-Partenkichen, Germany, 12–17 Oct., , pp. 501– 506Google Scholar
  18. 18.
    Starker P, Wohlfahrt H, E Macherauch (1979) Fatigue and fracture of engineering materials and structures, (1) 319Google Scholar
  19. 19.
    Bignonnet A (1987) Fatigue strength of shot-peened grade 35NCD16 steel variation of residual stresses introduced by shot peening according to type of loading, Proc. Third Int. Conf. on Shot Peening (ICSP-3), Garmisch-Partenkichen, Germany, 12–17 Oct., , pp. 659–666.Google Scholar
  20. 20.
    AlMangour B, Yang J (2016) Improving the surface quality and mechanical properties by shot-peening of 17-4 stainless steel fabricated by additive manufacturing. Mater Des 110:914–924.  https://doi.org/10.1016/j.matdes.2016.08.037 CrossRefGoogle Scholar
  21. 21.
    Li JK (1989) A study of the theory of the shot-peening. Ph.D. Dissertation, Harbin Institute of TechnologyGoogle Scholar
  22. 22.
    Miao HY, Larose S, Perron C, Lévesque M (2009) On the potential applications of a 3D random finite element model for the simulation of shot peening. Adv Eng Softw 40:1023–1038CrossRefzbMATHGoogle Scholar
  23. 23.
    Gangaraja SMH, Guaglianoa M, Farrahi GH (2014) An approach to relate shot peening finite element simulation to the actual coverage. Surf Coat Technol 243:39–45CrossRefGoogle Scholar
  24. 24.
    Seddik R, Petit EJ, Ben Sghaier R, Atig A, Fathallah R (2017) Predictive design approach of high-cycle fatigue limit of shot-peened parts. J Adv Manuf Technol 93:2321–2339.  https://doi.org/10.1007/s00170-017-0704-4 CrossRefGoogle Scholar
  25. 25.
    Guechichi H, Castex L, Frelat J, Inglebert G (1986) Predicting residual stress due to shot peening. Impact Surface Treatment, 2nd Int. Conf., Cranfield Inst. of Technol., Bedford, GB, 22.-26.9.1986Google Scholar
  26. 26.
    Khabou MT, Castex L, Inglebert G (1989) Effect of material behavior law on the theoretical shot peening results. Eur J Mech A/Solids 9:537–549zbMATHGoogle Scholar
  27. 27.
    Fathallah R, Inglebert G, Castex L (1998) Prédiction de la déformation plastique et des contraintes résiduelles induites dans des pièces métalliques par grenaillage. Mater Sci Technol 14:631–639CrossRefGoogle Scholar
  28. 28.
    Al-Hassani STS, Kormi K, Webb DC (1999) Numerical simulation of multiple shot impact. 7th International Conference on Shot Peening, Warsaw, Poland, 217–227Google Scholar
  29. 29.
    Meguid SA, Shagal G, Stranar JC (1999) Finite element modelling of shot peening residual stresses. J Mater Process Technol 92–93:401–404CrossRefGoogle Scholar
  30. 30.
    Majzoobi GH, Azizi R (2005) A 3D numerical study of shot peening process using multiple shot impacts. 9th International conference on Shot Peening. France, ParisGoogle Scholar
  31. 31.
    Kim T, Lee H, Kim M, Jung S (2012) A 3D FE model with plastic shot for evaluation of equibiaxial peening residual stressdue to multi-impacts. Surf Coat Technol 206:3981–3988CrossRefGoogle Scholar
  32. 32.
    Frija M, Hassine T, Fathallah R, Bouraoui C, Dogui A (2006) FEM modelling of shot peening process: prediction of the compressive residual stresses, the plastic deformations and the surface integrity. Mater Sci Eng 426:173–180CrossRefGoogle Scholar
  33. 33.
    Seddik R, Ben Sghaier R, Fathallah R (2016) A numerical-analytical approach to predict the effects of shot peening on the fatigue performance of the nickel-based super alloy Waspaloy. Proceedings of the Institution of Mechanical Engineers Part L Journal of Materials Design and Applications DOI:  https://doi.org/10.1177/1464420716663030. 233 128-140
  34. 34.
    Luong H, R. Hill M (2010) The effects of laser peening and shot peening on high cycle fatigue in 7050-T7451 aluminum. Mater Sci Eng A 527:699–707.Google Scholar
  35. 35.
    Trško L, Bokuvka O, Novy´ F, Guagliano M (2014) Effect of severe shot peening on ultra-high-cycle fatigue of a low-alloy steel. Mater Des 57:103–113CrossRefGoogle Scholar
  36. 36.
    Aggarwal ML, Agrawal VP, Khan RA (2006) A stress approach model for predictions of fatigue life by shot peening of EN45A spring steel. Int J Fatigue 28:1845–1853CrossRefGoogle Scholar
  37. 37.
    KAKIUCHI T, UEMATSU Y, HASEGAWA N, KONDOH E (2016) Effect of ultrasonic shot peening on high cycle fatigue behavior in type 304 stainless steel at elevated temperature. J Soc Mater Sci 65:325–330CrossRefGoogle Scholar
  38. 38.
    Manchoul S, Seddik R, Grissa R, Ben Sghaier R, Fathallah R (2017) A predictive approach to investigate the effect of ultrasonic shot peening on a high-cycle fatigue performance of an AISI 316 L target. J Adv Manuf Technol 95:3437–3451.  https://doi.org/10.1007/s00170-017-1450-3 CrossRefGoogle Scholar
  39. 39.
    ABAQUS (2011) Theory Manual Version 6.10.Published by Hibbitt, Karlsson and Sorensen Inc. USAGoogle Scholar
  40. 40.
    Armstrong PJ, Frederick CO (1966) A mathematical representation of the multi-axial Bauschinger effect. Technical Report RD/B/N731, CEGBGoogle Scholar
  41. 41.
    Chaboche J-L (1977) ‘Sur l’utilisation des variables d’état interne pour 867 la description de la viscoplasticité cyclique avec endommagement. In: 868 Problèmes Non Linéaires de Mécanique, Symposium Franco- Polonais de Rhéologie et Mécanique 137–159, CracovieGoogle Scholar
  42. 42.
    Lemaitre J, Chaboche JL (2002) Mécanique des matériaux solides. Dunod (Edition 2), ISBN 2 10 005662XGoogle Scholar
  43. 43.
    Sanjurjo P, Rodríguez C, Peñuelas I, García TE, Javier Belzunce F (2014) Influence of the target material constitutive model on the numerical simulation of a shot peening process. Surf Coat Technol 258:822–831CrossRefGoogle Scholar
  44. 44.
    Bagherifard S, Ghelichi R, Guagliano M (2010) A numerical model of severe shot peening (SSP) to predict the generation of a nanostructured surface layer of material. Surf Coat Technol 204:4081–4090CrossRefGoogle Scholar
  45. 45.
    Todaka Y, Umemoto M, Tsuchiya K (2004) Comparison of nanocrystalline surface layer in steels formed by air blast and ultrasonic shot peening. Mater Trans 45:376–379CrossRefGoogle Scholar
  46. 46.
    Astaraee AH, Miresmaeili R, Bagherifard S, Guagliano M, Aliofkhazraei M (2017) Incorporating the principles of shot peening for a better understanding of the surface mechanical attrition treatment (SMAT) by simulations and experiments. Mater Des 116:365–373CrossRefGoogle Scholar
  47. 47.
    Ben Sghaier R, Ch B, Fathallah R, Degallaix G (2010) High cycle fatigue based reliability design of welded and shot peened high strength steel. Fatigue Fract Eng Mater Struct 12:575–594Google Scholar
  48. 48.
    Mylonas GI, Labeas G (2011) Numerical modelling of shot peening process and corresponding products: residual stress, surface roughness and cold work prediction. Surf Coat Technol 205:4480–4494CrossRefGoogle Scholar
  49. 49.
    DangVan K (1999) Introduction to fatigue analysis in mechanical design by the multiscale approach. In: Dang Van Ky, Paradopoulos IV (eds) vol 392. Springer-Verlag, pp 57–88Google Scholar
  50. 50.
    Crossland B (1956) Effect of large hydrostatic pressure’s on the torsional fatigue strength of an alloy steel. Proc Int Conf Fatigue Metals (Instn Mech Engrs, London) :138Google Scholar
  51. 51.
    Laamouri A, Sidhom H, Braham C (2013) Evaluation of residual stress relaxation and its effect on fatigue strength of AISI 316 L stainless steel ground surfaces: experimental and numerical approaches. Int J Fatigue 48:109–121CrossRefGoogle Scholar
  52. 52.
    Abdul-Latif A (1996) Constitutive equations for cyclic plasticity of Waspaloy. Int J Plast 12:967–985CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • S. Manchoul
    • 1
    • 2
    Email author
  • R. Seddik
    • 1
    • 2
  • R. Ben Sghaier
    • 1
    • 3
  • R. Fathallah
    • 1
    • 2
  1. 1.Unité de Génie de Production Mécanique et Matériaux (UGPM2-UR17ES43), National Engineering School of SfaxUniversity of SfaxSfaxTunisia
  2. 2.National Engineering School of SousseUniversity of SousseSousseTunisia
  3. 3.Higher Institute of Applied Sciences and Technology of SousseUniversity of SousseSousseTunisia

Personalised recommendations